opencv c++ 光流法、稀疏光流法、稠密光流法、均值迁移追踪(meanshift、camshift)

1、概念

参考:

(70条消息) 什么是光流法_张年糕慢慢走的博客-CSDN博客_光流法

 (70条消息) 计算机视觉--光流法(optical flow)简介_T-Jhon的博客-CSDN博客_光流法

此外,还有基于均值迁移的目标追踪方法:

camshift:

(75条消息) opencv3中camshift详解(一)camshiftdemo代码详解_夏言谦的博客-CSDN博客

meanshift:

(75条消息) Opencv——用均值平移法meanshift做目标追踪_走过,莫回头的博客-CSDN博客

2、API

 光流法:

void cv::calcOpticalFlowPyrLK	(	InputArray 	prevImg,
                                    InputArray 	nextImg,
                                    InputArray 	prevPts,
                                    InputOutputArray 	nextPts,
                                    OutputArray 	status,
                                    OutputArray 	err,
                                    Size 	winSize = Size(21, 21),
                                    int 	maxLevel = 3,
                                    TermCriteria 	criteria 
                                    int 	flags = 0,
                                    double 	minEigThreshold = 1e-4 
                                    )		

criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01)

 
prevImg ——前一帧图像。
nextImg ——后一帧图像。
prevPts ——前一帧的角点vector,初始需要输入预获取的角点。
nextPts ——后一帧的角点vector
status——output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the corresponding features has been found, otherwise, it is set to 0.
err ——输出的角点的错误信息。
winSize ——光流法窗口大小。
maxLevel——光流层数,0只有1层,1为2层,以此类推
criteria ——停止条件
flags ——operation flags:
OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is not set, then prevPts is copied to nextPts and is considered the initial estimate.
OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see minEigThreshold description); if the flag is not set, then L1 distance between patches around the original and a moved point, divided by number of pixels in a window, is used as a error measure.
minEigThreshold——the algorithm calculates the minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in [25]), divided by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding feature is filtered out and its flow is not processed, so it allows to remove bad points and get a performance boost.

定义停止条件:当迭代10次不需要计算,两次的计算结果差小于0.01也不需要计算
    TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10, 0.01); 

 稠密光流法:


void cv::calcOpticalFlowFarneback	(	InputArray 	prev,
                                        InputArray 	next,
                                        InputOutputArray 	flow,
                                        double 	pyr_scale,
                                        int 	levels,
                                        int 	winsize,
                                        int 	iterations,
                                        int 	poly_n,
                                        double 	poly_sigma,
                                        int 	flags 
                                        )	

flow——输出的光流场数据Mat_对象
pyr_scale——金字塔前后层大小之比,一般取0.5.
levels ——光流金字塔层数,一般取3.
iterations ——迭代次数。
poly_n ——多项式阶数 , typically poly_n =5 or 7.
poly_sigma ——standard deviation of the Gaussian that is used to smooth derivatives used as a basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a good value would be poly_sigma=1.5.

 camshift:


RotatedRect cv::CamShift	(	InputArray 	probImage,
                                Rect & 	window,
                                TermCriteria 	criteria 
                                )	

window——Initial search window. 

 meanshift:


int cv::meanShift	(	InputArray 	probImage,
                        Rect & 	window,
                        TermCriteria 	criteria 
                        )		

3、代码

 光流法:

void QuickDemo::shade_flow()
{
	VideoCapture capture("https://vd4.bdstatic.com/mda-nm67dtz2afxmwat7/sc/cae_h264/1670390212002064886/mda-nm67dtz2afxmwat7.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670484546-0-0-792e5c9ffc23b54e025e91106b771e99&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3546818474&vid=6396276202448861552&abtest=104960_2&klogid=3546818474");
	if (capture.isOpened()) {
		cout << "ok!" << endl;
	}
	//获取合适帧率
	int fps = capture.get(CAP_PROP_FPS);
	cout << "fps" << fps << endl;

	Mat old_frame, old_gray;
	capture.read(old_frame);
	cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
	//角点获取
	vector feature_pts;
	goodFeaturesToTrack(old_gray, feature_pts, 100, 0.01,10,Mat(),3,false);

	Mat frame, gray;
	vector pts[2];
	pts[0].insert(pts[0].end(), feature_pts.begin(), feature_pts.end());

	vector status;
	vector err;
	//定义停止条件,当迭代10次不需要计算,两次的计算结果差小于0.01也不需要计算
	TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10, 0.01);

	while (true)
	{
		//capture >> frame;//尽量不用
		//逐帧传入视频
		bool ret = capture.read(frame);
		if (!ret)break;

		cvtColor(frame, gray, COLOR_BGR2GRAY);
		//光流法函数
		calcOpticalFlowPyrLK(old_frame, frame, pts[0], pts[1], status, err, Size(21, 21), 3, criteria, 0);
		//检测是否出错
		size_t i = 0, k = 0;
		RNG rng(12345);
		for (i = 0; i < pts[1].size(); ++i) {
			//距离与状态检测
			if (status[i]) {
				pts[0][k] = pts[0][i];
				pts[1][k++] = pts[1][i];
				int b = rng.uniform(0, 255);
				int g = rng.uniform(0, 255);
				int r = rng.uniform(0, 255);
				circle(frame, pts[1][i], 3, Scalar(b, g, r), 3, 8);
				line(frame, pts[0][i], pts[1][i], Scalar(b, g, r), 3, 8);
			}
		}
		//更新角点vector容量
		pts[0].resize(k);
		pts[1].resize(k);

		imshow("frame", frame);
		char c = waitKey(fps+10);
		if (c == 27)
			break;

		//更换帧图像,帧角点信息
		swap(pts[1], pts[0]);
		swap(old_gray, gray);
	}
	capture.release();
}

opencv c++ 光流法、稀疏光流法、稠密光流法、均值迁移追踪(meanshift、camshift)_第1张图片

 稀疏光流法:

void QuickDemo::poor_shade_flow()
{
	VideoCapture capture("https://vd4.bdstatic.com/mda-nm67dtz2afxmwat7/sc/cae_h264/1670390212002064886/mda-nm67dtz2afxmwat7.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670484546-0-0-792e5c9ffc23b54e025e91106b771e99&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3546818474&vid=6396276202448861552&abtest=104960_2&klogid=3546818474");
	if (capture.isOpened()) {
		cout << "ok!" << endl;
	}
	//获取合适帧率
	int fps = capture.get(CAP_PROP_FPS);
	cout << "fps" << fps << endl;

	Mat old_frame, old_gray;
	capture.read(old_frame);
	cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);

	//角点光源初始化
	vector feature_pts;
	goodFeaturesToTrack(old_gray, feature_pts, 50, 0.01, 50, Mat(), 3, false);
	vector pts[2];
	pts[0].insert(pts[0].end(), feature_pts.begin(), feature_pts.end());

	vector initial_points;
	initial_points.insert(initial_points.end(), feature_pts.begin(), feature_pts.end());

	Mat frame, gray;
	vector status;
	vector err;
	//定义停止条件,当迭代10次不需要计算,两次的计算结果差小于0.01也不需要计算
	TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10, 0.01);

	while (true)
	{
		//capture >> frame;//尽量不用
		//逐帧传入视频
		bool ret = capture.read(frame);
		if (!ret)break;

		cvtColor(frame, gray, COLOR_BGR2GRAY);
		//光流法函数
		calcOpticalFlowPyrLK(old_frame, frame, pts[0], pts[1], status, err, Size(21, 21), 3, criteria, 0);
		//检测是否出错
		size_t i = 0, k = 0;
		RNG rng(12345);
		for (i = 0; i < pts[1].size(); ++i) {
			//距离与状态检测
			double dist = abs(pts[0][i].x - pts[1][i].x) + abs(pts[0][i].y - pts[1][i].y);
			if (status[i] && dist >2) {
				pts[0][k] = pts[0][i];
				pts[1][k++] = pts[1][i];
				initial_points[k] = initial_points[i];
				int b = rng.uniform(0, 255);
				int g = rng.uniform(0, 255);
				int r = rng.uniform(0, 255);
				circle(frame, pts[1][i], 3, Scalar(b, g, r), 3, 8);
				line(frame, pts[0][i], pts[1][i], Scalar(b, g, r), 3, 8);
			}
		}
		//更新角点vector容量
		pts[0].resize(k);
		pts[1].resize(k);
		initial_points.resize(k);

		//绘制跟踪线
		draw_line(frame,pts[0],pts[1]);
		imshow("frame", frame);
		char c = waitKey(fps + 10);
		if (c == 27)
			break;

		//更换帧图像,帧角点信息
		swap(pts[1], pts[0]);
		swap(old_gray, gray);

		//在稀疏光源法还要重新初始化,当角点数小于40时,重新初始化
		if (pts[0].size()<40) {
			goodFeaturesToTrack(old_gray, feature_pts, 50, 0.01, 50, Mat(), 3, false);
			pts[0].insert(pts[0].end(), feature_pts.begin(), feature_pts.end());
			initial_points.insert(initial_points.end(), feature_pts.begin(), feature_pts.end());
		}
	}
	capture.release();
}

void QuickDemo::draw_line(Mat& image, vector pts1, vector pts2)
{	
	vectorlut;
	RNG rng(12345);
	for (auto i = 0; i < pts1.size(); ++i) {
		int b = rng.uniform(0, 255);
		int g = rng.uniform(0, 255);
		int r = rng.uniform(0, 255);
		lut.push_back(Scalar(b, g, r));
	}
	for (auto i = 0; i < pts1.size(); ++i) {
		line(image, pts1[i], pts2[i], Scalar(255, 0, 0), 2, 8);
	}
}

稠密光流法:

void QuickDemo::dense_shade_flow()
{
	VideoCapture capture("https://vd4.bdstatic.com/mda-nm67dtz2afxmwat7/sc/cae_h264/1670390212002064886/mda-nm67dtz2afxmwat7.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670484546-0-0-792e5c9ffc23b54e025e91106b771e99&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3546818474&vid=6396276202448861552&abtest=104960_2&klogid=3546818474");
	if (!capture.isOpened())
		cout << "error" << endl;
	namedWindow("frame", WINDOW_FREERATIO);
	namedWindow("result", WINDOW_FREERATIO);

	int fps = capture.get(CAP_PROP_FPS);

	//定义当前帧,前一帧,并灰度转换
	Mat frame, preframe;
	Mat gray, pregray;
	capture.read(preframe);
	cvtColor(preframe, pregray, COLOR_BGR2GRAY);
	Mat hsv = Mat::zeros(preframe.size(), preframe.type());

	Mat mag = Mat::zeros(hsv.size(), CV_32FC1);
	Mat ang = Mat::zeros(hsv.size(), CV_32FC1);
	Mat xpts = Mat::zeros(hsv.size(), CV_32FC1);
	Mat ypts = Mat::zeros(hsv.size(), CV_32FC1);
	
	//输出光流场数据空间定义
	Mat_ flow;

	//通道拆分
	vector mv;
	split(hsv, mv);

	Mat bgr;
	while (true) {
		bool ret = capture.read(frame);
		char c = waitKey(fps + 5);
		if (c == 27)break;

		cvtColor(frame, gray, COLOR_BGR2GRAY);
		calcOpticalFlowFarneback(pregray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);

		for (int row = 0; row < flow.rows; ++row) {
			for (int col = 0; col < flow.cols; ++col) {
				const Point2f& flow_xy = flow.at(row, col);

				//取出对应x、y方向的光流场数据
				xpts.at(row, col) = flow_xy.x;
				ypts.at(row, col) = flow_xy.y;
			}

		}
		//转极坐标空间,并归一化到(0,255)
		cartToPolar(xpts, ypts, mag, ang);
		ang = ang * 180 / CV_PI/2.0;
		normalize(mag, mag, 0, 255, NORM_MINMAX);

		//绝对值处理
		convertScaleAbs(mag, mag);
		convertScaleAbs(ang,ang);

		//各通道图像更新,并融合通道
		mv[0] = ang;
		mv[1] = Scalar(255);
		mv[2] = mag;
		merge(mv, hsv);

		cvtColor(hsv, bgr, COLOR_HSV2BGR);
		imshow("frame", frame);
		imshow("result", bgr);

	}
	capture.release();
}

meanshift(camshift类似):

void QuickDemo::meanshift_demo()
{
	VideoCapture capture("https://vd2.bdstatic.com/mda-kfnppaw9yfdzk3kt/v1-cae/sc/mda-kfnppaw9yfdzk3kt.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670502387-0-0-eca212d3f2910d53f98303c63ae9ffea&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3387437100&vid=9716606416298726566&abtest=104960_2-106506_2&klogid=3387437100");
	if (!capture.isOpened())
		cout << "error" << endl;
	namedWindow("meanshift", WINDOW_FREERATIO);

	int fps = capture.get(CAP_PROP_FPS);

	//在hsv格式进行反向投影
	Mat frame, hsv, hue, mask, hist, backproj;
	capture.read(frame);

	bool istrack = true;
	Rect track_window;

	//直方图
	int hsize = 16;
	float h_range[] = { 0,180 };
	const float* ranges = h_range;

	//手动ROI框选的API调用
	Rect select = selectROI("meanshift", frame, true, false);

	while (true) {
		bool ret = capture.read(frame);
		char c = waitKey(fps + 5);
		if (c == 27)break;

		cvtColor(frame, hsv, COLOR_BGR2HSV);
		inRange(hsv, Scalar(170, 110, 30), Scalar(182, 150, 60), mask);
		//imshow("hsv", hsv);

		int ch[] = { 0,0 };
		hue.create(hsv.size(), hsv.depth());

		mixChannels(&hsv, 1, &hue,1,ch,1);

		if (istrack) {
			Mat roi(hue, select), maskroi(mask, select);
			calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &ranges);
			normalize(hist, hist, 0, 255, NORM_MINMAX);
			track_window = select;
			istrack = false;
		}

		//meanshift
		calcBackProject(&hue, 1, 0, hist, backproj, &ranges);
		backproj &= mask;
		meanShift(backproj, track_window, TermCriteria(TermCriteria::COUNT | TermCriteria::EPS, 10, 0.1));

		rectangle(frame, track_window, Scalar(0, 0, 255), 3, LINE_AA);
		imshow("meanshift", frame);

	}
	capture.release();
}

 

你可能感兴趣的:(opencv,c++,opencv,人工智能,计算机视觉)