OpenCV学习17_ 分水岭算法

一、分水岭算法

在许多实际运用中,我们需要分割图像,但无法从背景图像中获得有用信息。分水岭算法(watershed algorithm)在这方面往往是非常有效的。此算法可以将图像中的边缘转化成“山脉”,将均匀区域转化为“山谷”,这样有助于分割目标。

分水岭算法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明:在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。

分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是由L. Vincent提出的。在该算法中,分水岭计算分两个步骤:一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高的排序,然后在从低到高实现淹没的过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像的极大值点。

也就是说,分水岭算法首先计算灰度图像的梯度;这对图像中的“山谷”或没有纹理的“盆地” (亮度值低的点)的形成是很有效的,也对“山头”或图像中有主导线段的“山脉”(山脊对应的边缘)的形成有效。然后开始从用户指定点(或者算法得到点)开始持续“灌注”盆地直到这些区域连成一片。基于这样产生的标记就可以把区域合并到0一起,合并后的区域又通聚集的方式进行分割,好像图像被“填充”起来一样。

1.1 实现分水岭算法: watershed()函数

函数watershed实现的分水岭算法是基于标记的分割算法中的一种。在把图像传给函数之前,我们需要大致勾画标记出图像中的期望进行分割的区域,它们被标记为正指数。所以,每一个区域都会被标记为像素值1、2、3等,表示成为一个或者多个连接组件。这些标记的值可以使用findContours()函数和drawContours()函数由二进制的掩码检索出来。不难理解,这些标记就是即将绘制出来的分割区域的“种子”,而没有标记清楚的区域,被置为0。在函数输出中,每一个标记中的像素被设置为“种子”的值,而区域间的值被设置为-1。

C++: void watershed (InputArray image, InputOutputArray markers)
  • 第一个参数, InputArray类型的sre,输入图像,即源图像,填Mat类的对象即可,且需为8位三通道的彩色图像。
  • 第二个参数, InputOutputArray类型的markers,函数调用后的运算结果存在这里,输入/输出32位单通道图像的标记结果。即这个参数用于存放函数调用后的输出结果,需和源图片有一样的尺寸和类型。

1.2 示例程序

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include 
using namespace cv;
using namespace std;

#define WINDOW_NAME1 "【程序窗口】"        //为窗口标题定义的宏 
#define WINDOW_NAME2 "【分水岭算法效果图】"        //为窗口标题定义的宏

Mat g_maskImage, g_srcImage;
Point prevPt(-1, -1);

static void on_Mouse(int event, int x, int y, int flags, void*);

int main(int argc, char** argv)
{
	//【1】载入原图并显示,初始化掩膜和灰度图
	g_srcImage = imread("F:\\CV\\LearnCV\\files\\Zelda_Scene1.jpg",1);
	imshow(WINDOW_NAME1, g_srcImage);
	Mat srcImage, grayImage;
	g_srcImage.copyTo(srcImage);
	cvtColor(g_srcImage, g_maskImage, COLOR_BGR2GRAY);
	cvtColor(g_maskImage, grayImage, COLOR_GRAY2BGR);
	g_maskImage = Scalar::all(0);

	//【2】设置鼠标回调函数
	setMouseCallback(WINDOW_NAME1, on_Mouse, 0);

	//【3】轮询按键,进行处理
	while (1)
	{
		//获取键值
		int c = waitKey(0);

		//若按键键值为ESC时,退出
		if ((char)c == 27)
			break;

		//按键键值为2时,恢复源图
		if ((char)c == '2')
		{
			g_maskImage = Scalar::all(0);
			srcImage.copyTo(g_srcImage);
			imshow("image", g_srcImage);
		}

		//若检测到按键值为1或者空格,则进行处理
		if ((char)c == '1' || (char)c == ' ')
		{
			//定义一些参数
			int i, j, compCount = 0;
			vector<vector<Point> > contours;
			vector<Vec4i> hierarchy;

			//寻找轮廓
			findContours(g_maskImage, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);

			//轮廓为空时的处理
			if (contours.empty())
				continue;

			//拷贝掩膜
			Mat maskImage(g_maskImage.size(), CV_32S);
			maskImage = Scalar::all(0);

			//循环绘制出轮廓
			for (int index = 0; index >= 0; index = hierarchy[index][0], compCount++)
				drawContours(maskImage, contours, index, Scalar::all(compCount + 1), -1, 8, hierarchy, INT_MAX);

			//compCount为零时的处理
			if (compCount == 0)
				continue;

			//生成随机颜色
			vector<Vec3b> colorTab;
			for (i = 0; i < compCount; i++)
			{
				int b = theRNG().uniform(0, 255);
				int g = theRNG().uniform(0, 255);
				int r = theRNG().uniform(0, 255);

				colorTab.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
			}

			//计算处理时间并输出到窗口中
			double dTime = (double)getTickCount();
			watershed(srcImage, maskImage);
			dTime = (double)getTickCount() - dTime;
			printf("\t处理时间 = %gms\n", dTime*1000. / getTickFrequency());

			//双层循环,将分水岭图像遍历存入watershedImage中
			Mat watershedImage(maskImage.size(), CV_8UC3);
			for (i = 0; i < maskImage.rows; i++)
				for (j = 0; j < maskImage.cols; j++)
				{
					int index = maskImage.at<int>(i, j);
					if (index == -1)
						watershedImage.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
					else if (index <= 0 || index > compCount)
						watershedImage.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
					else
						watershedImage.at<Vec3b>(i, j) = colorTab[index - 1];
				}

			//混合灰度图和分水岭效果图并显示最终的窗口
			watershedImage = watershedImage * 0.5 + grayImage * 0.5;
			imshow(WINDOW_NAME2, watershedImage);
		}
	}

	return 0;
}


//-----------------------------------【onMouse( )函数】---------------------------------------
//		描述:鼠标消息回调函数
//-----------------------------------------------------------------------------------------------
static void on_Mouse(int event, int x, int y, int flags, void*)
{
	//处理鼠标不在窗口中的情况
	if (x < 0 || x >= g_srcImage.cols || y < 0 || y >= g_srcImage.rows)
		return;

	//处理鼠标左键相关消息
	if (event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON))
		prevPt = Point(-1, -1);
	else if (event == EVENT_LBUTTONDOWN)
		prevPt = Point(x, y);

	//鼠标左键按下并移动,绘制出白色线条
	else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
	{
		Point pt(x, y);
		if (prevPt.x < 0)
			prevPt = pt;
		line(g_maskImage, prevPt, pt, Scalar::all(255), 5, 8, 0);
		line(g_srcImage, prevPt, pt, Scalar::all(255), 5, 8, 0);
		prevPt = pt;
		imshow(WINDOW_NAME1, g_srcImage);
	}
}

OpenCV学习17_ 分水岭算法_第1张图片

你可能感兴趣的:(OpenCV,OpenCV)