Zetane Engine : 神经网络一键可视化

转自:神经网络一键可视化!这个AI神器可以放大网络中的任何一层,显示特征图!

 GitHub - zetane/viewer: ML models and internal tensors 3D visualizer

注:该神器只能对 ONNX, Keras(.h5) 以及 ZTN 的模型进行可视化。

如果是 .pth 模型,可以考虑模型转换:

Pytorch训练的模型转.onnx、.pb、.h5、.tftile_developer&learner的博客-CSDN博客_onnx转h5

当然,转换后是否还可以可视化,还没有尝试。后续用到时,再更新说明吧。

神经网络在工作的时候,里面到底是什么样?

为了能透视这个“AI黑箱”中的过程,加拿大蒙特利尔一家公司开发一个3D可视化工具Zetane Engine。

只需要上传一个模型,Zetane Engine 就可以巡视整个神经网络,并且还可以放大网络中的任何一层,显示特征图,看清流水线上的每一步:

Zetane Engine : 神经网络一键可视化_第1张图片

目前Zetane Engine不同系统的版本都可以在 GitHub中找到,话不多说,来看看Zetane Engine具体的用法吧~

可视化AI工作流程

首先,我们需要上传一个模型,例如一个识别手写数字的神经网络,输入的图片是一个手写的“2”:

Zetane Engine : 神经网络一键可视化_第2张图片

上传之后,Zetane Engine就绘制出了一条“流水线”,每一层神经网络就像一个个工作间:

从输入到卷积,再到连接、激活、池化:

Zetane Engine : 神经网络一键可视化_第3张图片

这些个小工作间的进展也是透明的,不信我们聚焦到一个卷积层工作间,点这个图片形状的按钮:

Zetane Engine : 神经网络一键可视化_第4张图片

只有这些还不够,高能现在才刚开始,注意图片按钮右边九个点形状的按钮了吗?

点击它,Zetane Engine会在界面右边展示出一个工具栏,把刚才显示在卷积层上面的图片呈现出各种各样的形式~

Zetane Engine : 神经网络一键可视化_第5张图片

其中有排列成三维立体的、标注卷积结果数值的,以及纯数值的应有尽有:

二维视角

Zetane Engine : 神经网络一键可视化_第6张图片

三维视角

Zetane Engine : 神经网络一键可视化_第7张图片

标注卷积结果的平面图

Zetane Engine : 神经网络一键可视化_第8张图片

纯卷积结果的数值平面图

Zetane Engine : 神经网络一键可视化_第9张图片

这样的“工作报告”,谁看了不喜欢?不仅能够可视化地看到卷积过程,还可以调出每一个像素点上的卷积结果。

这还没完,这种多角度的图像处理在连接层、激活层、池化层等工作间也同样适用:

Zetane Engine : 神经网络一键可视化_第10张图片

图注:激活层特征图

Zetane Engine : 神经网络一键可视化_第11张图片

图注:池化层特征图

一整个看下来,神经网络的工作流程都清清楚楚:

Zetane Engine : 神经网络一键可视化_第12张图片

到了最后的全连接输出层,模型会输出一个十列的一维向量(下图右边),用来判断手写数字是0-9的哪一个。

Zetane Engine : 神经网络一键可视化_第13张图片

在这个例子中,模型给出了可能性最高的就是数字2。

Zetane Engine : 神经网络一键可视化_第14张图片

怎么样?有了这样可视化的工具,是不是感觉AI模型不再是一个黑箱了?

Zetane Engine用法速览

Zetane Engine不同系统的版本(Windows、Linux、Mac)都可以在GitHub中找到。

这里我们简单介绍一下Zetane Engine的界面和启动台,方便大家快速熟悉。

打开之后界面是比较简洁的,只有左上角和右上角有一些按钮。我们先看左上角。

Zetane Engine : 神经网络一键可视化_第15张图片

上传模型的按钮在启动台左上角Z字标志这里,Zetane Engine支持ONNX、Keras(.h5)以及ZTN三种模型文件。

Z字按钮旁边两个按钮依次是启动模型和清除模型:

Zetane Engine : 神经网络一键可视化_第16张图片

如果手头上还没有模型也没关系,点击界面右上角的Z形图标可以到Zetane Engine的模型库中下载模型:

Zetane Engine : 神经网络一键可视化_第17张图片

Zetane Engine : 神经网络一键可视化_第18张图片

图注:Zetane Engine的模型库

另外在启动台SNAPSHOTS按钮这里也有一些经典模型可以选择:

Zetane Engine : 神经网络一键可视化_第19张图片

感兴趣的同学可以从文末链接中找到Zetane Engine的下载包,来试试吧~

参考链接:

[1]https://github.com/Zetane/viewer
[2]https://www.youtube.com/watch?v=J3Zd5GR_lQs

你可能感兴趣的:(随笔,deep,learning,深度学习,特征可视化,神经网络一键可视化,Zetane,Engine)