scikit-learn 逻辑回归--调参

代码笔记:

from sklearn.linear_model import LogisticRegression as LR
from sklearn.datasets import load_breast_cancer
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

data = load_breast_cancer() #data 是一个字典
X = data.data
y = data.target

lrl1 = LR(penalty="l1", solver = "liblinear", C = 0.5, max_iter=1000)
lrl2 = LR(penalty="l2", solver = "liblinear", C = 0.5, max_iter=1000)

lrl1 = lrl1.fit(X,y)
lrl2 = lrl2.fit(X,y)

(lrl1.coef_!=0).sum(axis=1) #l1正则化,参数被稀疏化,可以防止过拟合
(lrl2.coef_!=0).sum(axis=1) #l2正则化,非零稀疏比较多

#调参数
l1test=[]
l2test=[]
l1 = []
l2 = []

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,y, test_size=0.3, random_state=420)
for i in np.linspace(0.05, 1, 19):
    lrl1 = LR(penalty="l1", solver = "liblinear", C = i, max_iter=1000)
    lrl2 = LR(penalty="l2", solver = "liblinear", C = i, max_iter=1000)
    
    lrl1 = lrl1.fit(Xtrain, Ytrain)
    l1.append(accuracy_score(lrl1.predict(Xtrain), Ytrain))
    l1test.append(accuracy_score(lrl1.predict(Xtest), Ytest))
    
    lrl2 = lrl2.fit(Xtrain, Ytrain)
    l2.append(accuracy_score(lrl2.predict(Xtrain), Ytrain))
    l2test.append(accuracy_score(lrl2.predict(Xtest), Ytest))
    
graph = [l1, l2, l1test, l2test]
color = ["green","black","lightgreen","gray"]
label = ["L1","L2","L1test", "L2test"]

plt.figure(figsize=(6,6))
for i in range(len(graph)):
    plt.plot(np.linspace(0.05,1, 19),graph[i], color[i], label = label[i])
plt.legend(loc=4) #loc = 4, 表示右下角
plt.show()

 

你可能感兴趣的:(模式识别与机器学习,python)