基于神经气体网络的图像分割与量化(Matlab代码实现)

 欢迎关注

个人主页:我爱Matlab


点赞➕评论➕收藏 == 养成习惯(一键三连)

希望大家多多支持~一起加油

语录:将来的我一定会感谢现在奋斗的自己!

摘要

【图像分割】基于神经气体网络 (NGN)实现图像分割附matlab代码

✨⚡运行结果⚡✨

​​基于神经气体网络的图像分割与量化(Matlab代码实现)_第1张图片

 ​ 

♨️‍Matlab代码‍♨️

clc;
clear;
close all;

%% Load Image
Org=imread('Veg.jpg');
X = rgb2gray(Org);
X=double(X);
img=X;
X=X(:)';

%% Neural Gas Network (NGN) Parameters

ParVal.N = 16; % Number of Segments
ParVal.MaxIt = 50; % Number of runs

ParVal.tmax = 100000;

ParVal.epsilon_initial = 0.3;
ParVal.epsilon_final = 0.02;
ParVal.lambda_initial = 2;
ParVal.lambda_final = 0.1;
ParVal.T_initial = 5;
ParVal.T_final = 10;

%% Training Neural Gas Network
NGNnetwok = GasNN(X, ParVal);

%% Vector to image and plot
Weight=sum(round(rescale(NGNnetwok.w,1,ParVal.N)));
Weight=round(rescale(Weight,1,ParVal.N));
indexed=reshape(Weight(1,:),size(img));
segmented = label2rgb(indexed); 
% Plot Res
figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,2,1)
imshow(Org,[]); title('Original');
subplot(2,2,2)
imshow(img,[]); title('Grey');
subplot(2,2,3)
imshow(segmented);
title(['Segmented in [' num2str(ParVal.N) '] Segments']);
subplot(2,2,4)
imshow(indexed,[]);
title(['Quantized in [' num2str(ParVal.N) '] Thresholds']);

参考文献

[1]张烨,樊一超,许艇,郭艺玲.基于轻量化图像分割的物流车辆特征定位研究[J].浙江工业大学学报,2020,48(04):426-434.

你可能感兴趣的:(神经网络预测,图像识别,matlab,开发语言)