- CHAIN(GAN的一种)训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络深度学习pytorch算法
简介简介:作者针对数据有限场景下GANs训练中的判别器过拟合问题,提出了CHAIN(Lipschitz连续性约束归一化)方法。作者首先从理论角度分析了GAN泛化误差,发现减少判别器权重梯度范数对提升泛化能力至关重要。然后深入研究了批归一化(BN)在GAN判别器中应用困难的根本原因,通过理论分析证明BN的中心化和缩放步骤会导致梯度爆炸。基于这些发现,CHAIN设计了两个核心模块:用零均值正则化替代中
- React和Redux技术结合打造单页应用
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2015年,Facebook推出React项目,打破了开发界的界限,鼓励组件化开发,促进了前端工程师和前端社区的创新。同年,Redux出现,将状态管理工具集成到前端,赋予了前端更强大的能力。ReactRedux是一个结合了React和Redux的全栈框架,可以帮助开发者快速构建具有复杂交互和动态UI特性的web应用。在本文中,我将详细介绍ReactRedux的基
- 60天python训练计划----day51
尘浮728
python开发语言
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高importosimporttorchimporttorch.nnasnnimporttorch.optimasoptimimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transfor
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- DAY 51 复习日
忧陌606
Python打卡python
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高(一)Day43代码importosimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.
- 【python深度学习】DAY 51 复习日
抽风的雨610
【打卡】Python训练营python深度学习开发语言
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高1.读取数据使用CIFAR-10图像数据importtorchfromtorchvisionimportdatasets,transforms#数据预处理transform=transforms.Compose([transforms.ToTensor(),transforms.
- Day51 复习日-模型改进
cylat
python打卡机器学习人工智能python神经网络深度学习
day43对自己找的数据集用简单cnn训练,现在用预训练,加入注意力等importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms,modelsfromtorch.utils.dataimportDataLoader,random_splitimportmatplotlib
- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- 深度学习数据集加载
Ethan@LM
深度学习人工智能
数据集结构E:\Mytest\test20250622\pythonProject\dataset├──rose│├──rose1.jpg│├──rose2.jpg│└──...└──sunflower├──sunflower1.jpg├──sunflower2.jpg└──...主要只有的两个类fromtorch.utils.dataimportDatasetfromtorchvisionimp
- 所有自动化 EDA 库,尽在一家。
krishnaik06
pandasscikit-learnpythonmatplotlib
自动化探索性数据分析(EDA)库详解这篇文章介绍了各种自动化探索性数据分析(EDA)库,帮助数据科学家快速高效地进行数据探索。文章重点介绍了detail库,并展示了如何使用它来分析泰坦尼克号数据集。文章主要内容:EDA的重要性:EDA通常占数据科学项目30%的时间,因此使用自动化工具可以节省大量时间。detail库介绍:detail库可以快速生成直观的图表,帮助用户了解数据的分布、关系等信息。安装
- YOLO 中的三大框类型全解析:Ground Truth、Anchor、Bounding Box 有何区别?
1.GroundTruthBox(真值框)数据集中人工标注的真实目标位置。•是“答案”,模型训练的目标。•标注格式通常是[x,y,w,h,class_id]•比如一张猫的图,它的真实框就是groundtruthbox。⸻2.AnchorBox(锚框)预设的一些模板框,模型学习时的“参考基准”。•是一些固定的宽高组合(比如[10×13]、[16×30]等),•每个gridcell会分配若干ancho
- 【GESP】C++四级练习 luogu-P2615 [NOIP 2015 提高组] 神奇的幻方
CoderCodingNo
c++开发语言
GESPC++四级练习,多维数组练习,难度★★☆☆☆。题目题解详见:【GESP】C++四级练习luogu-P2615[NOIP2015提高组]神奇的幻方|OneCoder【GESP】C++四级练习luogu-P2615[NOIP2015提高组]神奇的幻方|OneCoderGESPC++四级练习,多维数组练习,难度★★☆☆☆。https://www.coderli.com/gesp-4-luogu-
- Flink CDC支持Oracle RAC架构CDB+PDB模式的实时数据同步吗,可以上生产环境吗
智海观潮
Flinkflinkcdcoracleflink数据同步大数据
众所周知,FlinkCDC是一个流数据集成工具,支持多种数据源的实时数据同步,包括大家所熟知的MySQL,MongoDB等。原本是作为Flink的子项目运行,后来捐献给Apache基金会,底层实现比较依赖于Flink生态。具体到数据同步底层实现则相对比较依赖于Debezium。对于Oracle实时数据同步有需求的用户来说,经常会有疑问,比如FlinkCDC支持Oracle实时数据同步吗,可以应用到
- day 58 python打卡
作业:对太阳黑子数量数据集用arima完成流程1.导入原始数据,并可视化#导入必要的库importpandasaspdimportmatplotlib.pyplotaspltfromstatsmodels.tsa.stattoolsimportadfullerfromstatsmodels.graphics.tsaplotsimportplot_acf,plot_pacffromstatsmode
- python打卡day58@浙大疏锦行
风逸hhh
python打卡60天行动python开发语言
知识点回顾:时序建模的流程时序任务经典单变量数据集ARIMA(p,d,q)模型实战SARIMA摘要图的理解处理不平稳的2种差分n阶差分---处理趋势季节性差分---处理季节性建立一个ARIMA模型,通常遵循以下步骤:1.数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。2.平稳性检验:-对原始序列进行ADF检验。-如果p值>0.05,说明序列非平稳,需要进行差分。3.确定差分次数d:-进行
- 【有手就行无废话版】huggingface下载模型以及数据集命令
镜像网站:HF-Mirror1.导入环境变量:只需要导入一次cd..#这一步切换到你需要下载的目录下exportHF_ENDPOINT=https://hf-mirror.com;wgethttps://hf-mirror.com/hfd/hfd.sh;chmoda+xhfd.sh2.搜索模型名称,点复制3.下载./hfd.sh+复制的模型名称比如:./hfd.shOpenGVLab/Intern
- 大棚番茄西红柿果实成熟度检测数据集YOLO格式279张3类别已划分训练验证集
数据集格式:YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及yolo格式txt文件)图片数量(jpg文件个数):279标注数量(xml文件个数):279标注数量(txt文件个数):279标注类别数:3所在仓库:firc-dataset标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["unripe","semi-ripe","
- ES6 教程:从零到精通
ES6教程:从零到精通es6-lessonses6入门教程及构建环境搭建,依赖webpack,欢迎fork或star项目地址:https://gitcode.com/gh_mirrors/es/es6-lessons项目介绍本项目[es6-lessons](https://github.com/cucygh/es6-lessons.git)专注于提供全面且易懂的ECMAScript2015(简称E
- Deepoc 大模型在无人机行业应用效果的方法
Deepoch
无人机人工智能科技语言模型ai
在无人机行业中,Deepoc大模型的潜力,提升其应用效果,可从以下多个关键方面着手:优化数据收集与处理多源数据采集扩充收集涵盖激光雷达点云、高精度地图、气象数据、无人机飞行传感器数据、拍摄的图像与视频等多源数据。例如,在城市环境应用里,除了获取建筑物的视觉图像数据,还收集周边交通流量、信号状态等数据,为Deepoc大模型提供丰富且全面的信息,助力其更精准地理解复杂环境。构建高质量数据集建立严格的数
- GEE数据集:全球地下水生态系统 (GDEs)数据集(30m分辨率)
此星光明
GEE数据集专栏数据库人工智能gee地下水水数据集全球
目录地下水的全球生态系统(GDEs)简介代码代码链接APP链接结果引用许可网址推荐0代码在线构建地图应用机器学习地下水的全球生态系统(GDEs)简介地下水是最广泛的液态淡水来源,但它在支持多样化生态系统方面的关键作用却往往不被人们所认识。在许多地区,依赖地下水的生态系统(GDEs)的位置和范围在很大程度上仍不为人所知,导致保护措施不足。该数据集提供了一张高分辨率(约30米)的GDEs地图,揭示了全
- Mamba-YOLOv8深度解析:基于状态空间模型的下一代目标检测架构(含完整代码与实战部署)文末含资料链接!
博导ai君
深度学习教学-附源码YOLO目标检测架构
文章目录前言一、技术背景与动机1.1传统架构的局限性1.2Mamba的创新优势二、Mamba-YOLOv8架构详解2.1整体架构设计2.2核心模块:VSSblock2.3SS2D模块工作原理三、完整实现流程3.1环境配置3.2代码集成步骤3.3训练与微调四、性能分析与优化4.1精度提升策略4.2推理加速方案4.3硬件适配技巧五、实战案例:无人机航拍检测5.1数据集准备5.2模型训练与评估六、未来研
- 计划开一个项目,这是计划表
PyAIGCMaster
我的学习笔记react.js
针对你计划使用React和Node.js建设一个数据集生成网站的CMS,下面是一个详细的整体架构建议,分为项目管理工具、数据库选择、前后端架构、功能实现步骤以及后期的拓展方案。1.项目管理工具推荐使用Trello或Jira,这两个工具适用于项目管理和任务分配,能够帮助你跟踪进度、管理功能模块、制定开发计划和进行代码审查。Jira更适合中大型项目,Trello适合简单灵活的管理。2.整体架构前端:使
- VLA模型
一介绍在机器人领域,视觉-语言-动作(VLA)模型的发展经历了显著的演变,这得益于计算机视觉和自然语言处理领域的进步。VLA模型代表了一类旨在处理多模态输入的模型,整合了来自视觉、语言和动作的信息。这些模型对于实现具身智能至关重要,使机器人能够理解物理世界并与之互动。以下是VLA模型发展的时间线:早期阶段:计算机视觉和自然语言处理的集成大约在2015年开始,随着视觉问答(VQA)系统的出现。这些系
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- AI大模型探索之路-训练篇15:大语言模型预训练之全量参数微调
寻道AI小兵
AI大模型预训练微调进阶AIGC人工智能语言模型自然语言处理pythonAI编程agi
系列篇章AI大模型探索之路-训练篇1:大语言模型微调基础认知AI大模型探索之路-训练篇2:大语言模型预训练基础认知AI大模型探索之路-训练篇3:大语言模型全景解读AI大模型探索之路-训练篇4:大语言模型训练数据集概览AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理AI大模型探索之路-训练篇7:大语言模型Transforme
- C语言中的内存管理 掌握动态分配的技巧
hie98894
c语言java算法
在C语言编程中,内存管理是一项至关重要的技能。它直接关系到程序的性能和稳定性,特别是在处理大型数据集或需要灵活内存布局的场景下。其中,动态内存分配是C语言内存管理的一个重要组成部分,它允许程序在运行时根据需要请求和释放内存,从而提高了内存的利用率和程序的灵活性。本文将深入探讨C语言中的动态内存分配技巧,帮助开发者更好地掌握这一核心技能。一、动态内存分配概述在C语言中,动态内存分配主要通过标准库函数
- YOLOv11安全检测项目_人员、安全帽、安全服、普通服装、头部、模糊服装、模糊头部目标检测
qq1309399183
计算机视觉实战项目集合YOLO目标检测人工智能深度学习计算机视觉
YOLOv10与YOLOv11安全检测项目项目概述Safety本项目基于SF数据集(50,559张图像/7类别)对YOLOv10和YOLOv11模型进行对比研究,重点优化安全帽、安全服及模糊目标的工业场景检测性能。核心要素组件配置说明模型架构YOLOv10vsYOLOv11双模型对比数据集[SF)检测类别人员、安全帽、安全服、普通服装、头部、模糊服装、模糊头部训练参数•迭代周期:100epochs
- 如何使用Nvivo的编码比较查询功能??
编码比较查询功能Nvivo的编码比较查询功能是一个强大的工具,能够帮助用户比较和分析在不同编码或不同数据集之间的差异。这一功能主要用于分析不同编码者或不同时间段、不同变量下的编码一致性,或者对比不同组别的数据内容,帮助研究者深入理解数据背后的潜在模式,并提升质性研究的可靠性。一、原理编码比较查询功能的核心原理是对比不同编码者对相同数据的编码情况,或者同一编码者在不同时间段的编码情况。通过这种对比,
- R语言程序包开发与应用
溪水边小屋
本文还有配套的精品资源,点击获取简介:R语言程序包是扩展功能的关键,提供了统计分析、数据可视化、机器学习等领域的丰富开源库。程序包通常由开发者创建,包含新函数、数据集、绘图方法等,以应对R版本更新导致的函数限制或行为变化。本文介绍了R程序包的构建过程,如编写函数、创建DESCRIPTION和NAMESPACE文件、编写帮助文档以及进行单元测试。同时,探讨了如何使用包管理工具安装和加载R程序包,以及
- 大数据基础知识-Hadoop、HBase、Hive一篇搞定
原来是猪猪呀
hadoop大数据分布式
HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构,其核心设计包括分布式文件系统(HDFS)和MapReduce编程模型;Hadoop是一个开源的分布式计算框架,旨在帮助用户在不了解分布式底层细节的情况下,开发分布式程序。它通过利用集群的力量,提供高速运算和存储能力,特别适合处理超大数据集的应用程序。Hadoop生态圈Hadoop生态圈是一个由多个基于Hadoop开发的相
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比