通过readme不难发现单卡训练是以tools/train.py作为程序的入口。首先贴出train.py的源代码。
from __future__ import division
import argparse
import copy
import os
import os.path as osp
import time
import mmcv
import torch
from mmcv import Config
from mmcv.runner import init_dist
from mmdet import __version__
from mmdet.apis import set_random_seed, train_detector
from mmdet.datasets import build_dataset
from mmdet.models import build_detector
from mmdet.utils import collect_env, get_root_logger
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work_dir', help='the dir to save logs and models')
parser.add_argument(
'--resume_from', help='the checkpoint file to resume from')
parser.add_argument(
'--validate',
action='store_true',
help='whether to evaluate the checkpoint during training')
parser.add_argument(
'--gpus',
type=int,
default=1,
help='number of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--autoscale-lr',
action='store_true',
help='automatically scale lr with the number of gpus')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
if args.autoscale_lr:
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, '{}.log'.format(timestamp))
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([('{}: {}'.format(k, v))
for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
dash_line)
meta['env_info'] = env_info
# log some basic info
logger.info('Distributed training: {}'.format(distributed))
logger.info('Config:\n{}'.format(cfg.text))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}, deterministic: {}'.format(
args.seed, args.deterministic))
set_random_seed(args.seed, deterministic=args.deterministic)
cfg.seed = args.seed
meta['seed'] = args.seed
#通过build_detector()构造模型;
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
#通过build_dataset()构造数据集;
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=datasets[0].CLASSES)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
# 通过train_detector()训练检测器;
train_detector(
model,
datasets,
cfg,
distributed=distributed,
validate=args.validate,
timestamp=timestamp,
meta=meta)
if __name__ == '__main__':
main()
这段代码主要是通过一个configure文件来设置使用哪个模型,超参的设置;configure文件通过mmcv\mmcv\utils\config.py中的如下代码:
def fromfile(filename,
use_predefined_variables=True,
import_custom_modules=True):
cfg_dict, cfg_text = Config._file2dict(filename,
use_predefined_variables)
if import_custom_modules and cfg_dict.get('custom_imports', None):
import_modules_from_strings(**cfg_dict['custom_imports'])
return Config(cfg_dict, cfg_text=cfg_text, filename=filename)
来解析configure,将其分为字典和字符两块内容。通过conf.model来build_detector(),而conf.model又是什么呢?以下以yolo为例来说明:
_base_ = '../_base_/default_runtime.py'
# model settings
model = dict(
type='YOLOV3',
pretrained='open-mmlab://darknet53',
backbone=dict(type='Darknet', depth=53, out_indices=(3, 4, 5)),
neck=dict(
type='YOLOV3Neck',
num_scales=3,
in_channels=[1024, 512, 256],
out_channels=[512, 256, 128]),
bbox_head=dict(
type='YOLOV3Head',
num_classes=80,
in_channels=[512, 256, 128],
out_channels=[1024, 512, 256],
anchor_generator=dict(
type='YOLOAnchorGenerator',
base_sizes=[[(116, 90), (156, 198), (373, 326)],
[(30, 61), (62, 45), (59, 119)],
[(10, 13), (16, 30), (33, 23)]],
strides=[32, 16, 8]),
bbox_coder=dict(type='YOLOBBoxCoder'),
featmap_strides=[32, 16, 8],
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0,
reduction='sum'),
loss_conf=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0,
reduction='sum'),
loss_xy=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=2.0,
reduction='sum'),
loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')),
# training and testing settings
train_cfg=dict(
assigner=dict(
type='GridAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0)),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
conf_thr=0.005,
nms=dict(type='nms', iou_threshold=0.45),
max_per_img=100))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='PhotoMetricDistortion'),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 2)),
dict(
type='MinIoURandomCrop',
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(608, 608),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=2000, # same as burn-in in darknet
warmup_ratio=0.1,
step=[218, 246])
# runtime settings
runner = dict(type='EpochBasedRunner', max_epochs=273)
evaluation = dict(interval=1, metric=['bbox'])
conf.model即为上述代码的model字典,通过这个字典来构建detector
然后再通过build_detector()、build_dataset()以及train_detector()来实现构造检测器、构造数据集、训练检测器的功能;
后续分三篇博客依次来讲解这三个函数;