记录OPENCV学习第一天

学习了图片的加载,显示,基本交互的waitkey,视频的逐帧遍历,颜色通道的基本操作和根据权重合并图片。中途还测试了由charGPT生成的边缘检测代码,并封装简化成了一个函数Edge_Dete()

import cv2
import numpy as np

if 0:
    img = cv2.imread('D:\\Myproject\\OPENCV\\picture\\lena.jpg')
    cv2.imshow('image',img)         #显示图片
    cv2.waitKey(0)          #等待任意按键退出

if 0:
    img = cv2.imread('D:\\Myproject\\OPENCV\\picture\\lena.jpg')
    print(img.shape)        #打印图片尺寸深度

if 0:
    img_gray = cv2.imread('D:\\Myproject\\OPENCV\\picture\\lena.jpg',cv2.IMREAD_GRAYSCALE)      #加载灰度图
    cv2.imshow('image_gray', img_gray)
    cv2.waitKey(0)

#打开视频并逐帧遍历
if 0:
    video = cv2.VideoCapture('D:\\Myproject\\OPENCV\\video\\street.mp4')
    if video.isOpened():
        print('视频打开成功')
    else:
        open = False
        print('视频打开失败')
        exit()
    
    while 1:
        ret,frame = video.read()
        if frame is None:
            print('视频结束')
            break
        else:
            cv2.imshow('video',frame)
            cv2.waitKey(33)

if 0:
    img = cv2.imread('D:\\Myproject\\OPENCV\\picture\\lena.jpg')
    cv2.imshow('ROI',img[100:200,100:400])      #设置ROI
    cv2.waitKey(0)

    #分离三通道数据
    green,red,blue = cv2.split(img)
    print('green:',green)
    print('red:',red)
    print('blue:',blue)

#直接设置通道值
if 0:
    img = cv2.imread('D:\\Myproject\\OPENCV\\picture\\lena.jpg')
    img[:,:,0] = 0     #G通道设置为0
    img[:,:,1] = 0     #R通道设置为0
    #B通道默认
    cv2.imshow('red_only',img)      
    cv2.waitKey(0)

if 0:
    T_size,B_size,L_size,R_size = 50,50,50,50
    #边界宽度50
    img = cv2.imread('D:\\Myproject\\OPENCV\\picture\\lena.jpg')
    #拉伸边缘像素
    replicate = cv2.copyMakeBorder(img, T_size, B_size, L_size, R_size, cv2.BORDER_REPLICATE)
    cv2.imshow('REPLICATE', replicate)
    #镜像
    reflect = cv2.copyMakeBorder(img, T_size, B_size, L_size, R_size, cv2.BORDER_REFLECT)
    cv2.imshow('REFLECT', reflect)
    #除去边缘一行的镜像
    reflect_101 = cv2.copyMakeBorder(img, T_size, B_size, L_size, R_size, cv2.BORDER_REFLECT_101)
    cv2.imshow('REFLECT_101', reflect_101)
    #对边
    wrap = cv2.copyMakeBorder(img, T_size, B_size, L_size, R_size, cv2.BORDER_WRAP)
    cv2.imshow('WRAP', wrap)
    #纯色填充
    const = cv2.copyMakeBorder(img, T_size, B_size, L_size, R_size, cv2.BORDER_CONSTANT,value=0xffffff)
    cv2.imshow('const', const)
    cv2.waitKey(0)

#边缘检测
def Edge_Dete(img, treshold):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, treshold[0], treshold[1])
    return edges

if 1:
    img = cv2.imread('D:\\Myproject\\OPENCV\\picture\\lena.jpg')
    img_edge = Edge_Dete(img, [50, 200])
    #重设颜色深度,两张图颜色深度必须相同
    img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
    #重设尺寸,两张图尺寸必须相同
    img_edge = cv2.resize(img_edge, [512, 512])
    #shape应当是(512, 512, 3)
    #print(img_edge.shape)
    #根据权重合并图片
    img = cv2.addWeighted(img, 0.6, img_edge, 0.8, 0)
    cv2.imshow('addweighted', img)
    cv2.waitKey(0)

机器视觉是未来智慧城市发展浪潮里不可或缺的一部分,OPENMV,MAIXPY终究局限性较大,想要更加专业OPENCV是必经之路,趁着寒假硬件的进度被拖慢学一学纯软件的东西。

你可能感兴趣的:(opencv,计算机视觉,学习)