Faster RCNN github : https://github.com/rbgirshick/py-faster-rcnn
Faster RCNN paper : https://arxiv.org/abs/1506.01497
Bound box regression详解 : http://download.csdn.net/download/zy1034092330/9940097(来源:王斌_ICT)
缩进经过RCNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。
图1 Faster CNN基本结构(来自原论文)
缩进依作者看来,如图1,Faster RCNN其实可以分为4个主要内容:
所以本文以上述4个内容作为切入点介绍Faster RCNN网络。
缩进图2展示了python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成foreground anchors与bounding box regression偏移量,然后计算出proposals;而Roi Pooling层则利用proposals从feature maps中提取proposal feature送入后续全连接和softmax网络作classification(即分类proposal到底是什么object)。
path:${py-faster-rcnn-root}/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt
图2 faster_rcnn_test.pt网络结构
缩进Conv layers包含了conv,pooling,relu三种层。以python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构为例,如图2,Conv layers部分共有13个conv层,13个relu层,4个pooling层。这里有一个非常容易被忽略但是又无比重要的信息,在Conv layers中:
为何重要?在Faster RCNN Conv layers中对所有的卷积都做了扩边处理(pad=1,即填充一圈0),导致原图变为(M+2)x(N+2)大小,再做3x3卷积后输出MxN。正是这种设置,导致Conv layers中的conv层不改变输入和输出矩阵大小。如图3:
图3
类似的是,Conv layers中的pooling层kernel_size=2,stride=2。这样每个经过pooling层的MxN矩阵,都会变为(M/2)*(N/2)大小。综上所述,在整个Conv layers中,conv和relu层不改变输入输出大小,只有pooling层使输出长宽都变为输入的1/2。
缩进那么,一个MxN大小的矩阵经过Conv layers固定变为(M/16)x(N/16)!这样Conv layers生成的featuure map中都可以和原图对应起来。
缩进经典的检测方法生成检测框都非常耗时,如OpenCV adaboost使用滑动窗口+图像金字塔生成检测框;或如RCNN使用SS(Selective Search)方法生成检测框。而Faster RCNN则抛弃了传统的滑动窗口和SS方法,直接使用RPN生成检测框,这也是Faster RCNN的巨大优势,能极大提升检测框的生成速度。
图4 RPN网络结构
上图4展示了RPN网络的具体结构。可以看到RPN网络实际分为2条线,上面一条通过softmax分类anchors获得foreground和background(检测目标是foreground),下面一条用于计算对于anchors的bounding box regression偏移量,以获得精确的proposal。而最后的Proposal层则负责综合foreground anchors和bounding box regression偏移量获取proposals,同时剔除太小和超出边界的proposals。其实整个网络到了Proposal Layer这里,就完成了相当于目标定位的功能。
缩进在介绍RPN前,还要多解释几句基础知识,已经懂的看官老爷跳过就好。
图5 多通道+多卷积核做卷积示意图(摘自Theano教程)
缩进如图5,输入图像layer m-1有4个通道,同时有2个卷积核w1和w2。对于卷积核w1,先在输入图像4个通道分别作卷积,再将4个通道结果加起来得到w1的卷积输出;卷积核w2类似。所以对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量!
缩进对多通道图像做1x1卷积,其实就是将输入图像于每个通道乘以卷积系数后加在一起,即相当于把原图像中本来各个独立的通道“联通”在了一起。
缩进提到RPN网络,就不能不说anchors。所谓anchors,实际上就是一组由rpn/generate_anchors.py生成的矩形。直接运行作者demo中的generate_anchors.py可以得到以下输出:
[python] view plain copy
其中每行的4个值[x1,y1,x2,y2]代表矩形左上和右下角点坐标。9个矩形共有3种形状,长宽比为大约为:width:height = [1:1, 1:2, 2:1]三种,如图6。实际上通过anchors就引入了检测中常用到的多尺度方法。
图6 anchors示意图
注:关于上面的anchors size,其实是根据检测图像设置的。在python demo中,会把任意大小的输入图像reshape成800x600(即图2中的M=800,N=600)。再回头来看anchors的大小,anchors中长宽1:2中最大为352x704,长宽2:1中最大736x384,基本是cover了800x600的各个尺度和形状。
那么这9个anchors是做什么的呢?借用Faster RCNN论文中的原图,如图7,遍历Conv layers计算获得的feature maps,为每一个点都配备这9种anchors作为初始的检测框。这样做获得检测框很不准确,不用担心,后面还有2次bounding box regression可以修正检测框位置。
图7
解释一下上面这张图的数字。
注意,在本文讲解中使用的VGG conv5 num_output=512,所以是512d,其他类似.....
缩进一副MxN大小的矩阵送入Faster RCNN网络后,到RPN网络变为(M/16)x(N/16),不妨设W=M/16,H=N/16。在进入reshape与softmax之前,先做了1x1卷积,如图8:
图8 RPN中判定fg/bg网络结构
该1x1卷积的caffe prototxt定义如下:
[cpp] view plain copy
可以看到其num_output=18,也就是经过该卷积的输出图像为WxHx18大小(注意第二章开头提到的卷积计算方式)。这也就刚好对应了feature maps每一个点都有9个anchors,同时每个anchors又有可能是foreground和background,所有这些信息都保存WxHx(9x2)大小的矩阵。为何这样做?后面接softmax分类获得foreground anchors,也就相当于初步提取了检测目标候选区域box(一般认为目标在foreground anchors中)。
缩进那么为何要在softmax前后都接一个reshape layer?其实只是为了便于softmax分类,至于具体原因这就要从caffe的实现形式说起了。在caffe基本数据结构blob中以如下形式保存数据:
blob=[batch_size, channel,height,width]
对应至上面的保存bg/fg anchors的矩阵,其在caffe blob中的存储形式为[1, 2*9, H, W]。而在softmax分类时需要进行fg/bg二分类,所以reshape layer会将其变为[1, 2, 9*H, W]大小,即单独“腾空”出来一个维度以便softmax分类,之后再reshape回复原状。贴一段caffe softmax_loss_layer.cpp的reshape函数的解释,非常精辟:
[cpp] view plain copy
综上所述,RPN网络中利用anchors和softmax初步提取出foreground anchors作为候选区域。
缩进介绍bounding box regression数学模型及原理。如图9所示绿色框为飞机的Ground Truth(GT),红色为提取的foreground anchors,那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准,这张图相当于没有正确的检测出飞机。所以我们希望采用一种方法对红色的框进行微调,使得foreground anchors和GT更加接近。
图9
缩进对于窗口一般使用四维向量(x, y, w, h)表示,分别表示窗口的中心点坐标和宽高。对于图 10,红色的框A代表原始的Foreground Anchors,绿色的框G代表目标的GT,我们的目标是寻找一种关系,使得输入原始的anchor A经过映射得到一个跟真实窗口G更接近的回归窗口G',即:给定anchor A=(Ax, Ay, Aw, Ah),GT=[Gx, Gy, Gw, Gh],寻找一种变换F:使得F(Ax, Ay, Aw, Ah)=(G'x, G'y, G'w, G'h),其中(G'x, G'y, G'w, G'h)≈(Gx, Gy, Gw, Gh)。
图10
那么经过何种变换F才能从图6中的anchor A变为G'呢? 比较简单的思路就是:
缩进 1. 先做平移
缩进 2. 再做缩放
缩进观察上面4个公式发现,需要学习的是dx(A),dy(A),dw(A),dh(A)这四个变换。当输入的anchor A与GT相差较小时,可以认为这种变换是一种线性变换, 那么就可以用线性回归来建模对窗口进行微调(注意,只有当anchors A和GT比较接近时,才能使用线性回归模型,否则就是复杂的非线性问题了)。对应于Faster RCNN原文,平移量(tx, ty)与尺度因子(tw, th)如下:
缩进接下来的问题就是如何通过线性回归获得dx(A),dy(A),dw(A),dh(A)了。线性回归就是给定输入的特征向量X, 学习一组参数W, 使得经过线性回归后的值跟真实值Y非常接近,即Y=WX。对于该问题,输入X是一张经过卷积获得的feature map,定义为Φ;同时还有训练传入的GT,即(tx, ty, tw, th)。输出是dx(A),dy(A),dw(A),dh(A)四个变换。那么目标函数可以表示为:
其中Φ(A)是对应anchor的feature map组成的特征向量,w是需要学习的参数,d(A)是得到的预测值(*表示 x,y,w,h,也就是每一个变换对应一个上述目标函数)。为了让预测值(tx, ty, tw, th)与真实值差距最小,设计损失函数:
函数优化目标为:
缩进在了解bounding box regression后,再回头来看RPN网络第二条线路,如图11。
图11 RPN中的bbox reg
先来看一看上图11中1x1卷积的caffe prototxt定义:
[cpp] view plain copy
可以看到其num_output=36,即经过该卷积输出图像为WxHx36,在caffe blob存储为[1, 36, H, W],这里相当于feature maps每个点都有9个anchors,每个anchors又都有4个用于回归的[dx(A),dy(A),dw(A),dh(A)]变换量。
缩进Proposal Layer负责综合所有[dx(A),dy(A),dw(A),dh(A)]变换量和foreground anchors,计算出精准的proposal,送入后续RoI Pooling Layer。还是先来看看Proposal Layer的caffe prototxt定义:
[cpp] view plain copy
Proposal Layer有3个输入:fg/bg anchors分类器结果rpn_cls_prob_reshape,对应的bbox reg的[dx(A),dy(A),dw(A),dh(A)]变换量rpn_bbox_pred,以及im_info;另外还有参数feat_stride=16,这和图4是对应的。
缩进首先解释im_info。对于一副任意大小PxQ图像,传入Faster RCNN前首先reshape到固定MxN,im_info=[M, N, scale_factor]则保存了此次缩放的所有信息。然后经过Conv Layers,经过4次pooling变为WxH=(M/16)x(N/16)大小,其中feature_stride=16则保存了该信息,用于计算anchor偏移量。
图12
缩进Proposal Layer forward(caffe layer的前传函数)按照以下顺序依次处理:
之后输出proposal=[x1, y1, x2, y2],注意,由于在第三步中将anchors映射回原图判断是否超出边界,所以这里输出的proposal是对应MxN输入图像尺度的,这点在后续网络中有用。另外我认为,严格意义上的检测应该到此就结束了,后续部分应该属于识别了~
RPN网络结构就介绍到这里,总结起来就是:
生成anchors -> softmax分类器提取fg anchors -> bbox reg回归fg anchors -> Proposal Layer生成proposals
缩进而RoI Pooling层则负责收集proposal,并计算出proposal feature maps,送入后续网络。从图3中可以看到Rol pooling层有2个输入:
缩进先来看一个问题:对于传统的CNN(如AlexNet,VGG),当网络训练好后输入的图像尺寸必须是固定值,同时网络输出也是固定大小的vector or matrix。如果输入图像大小不定,这个问题就变得比较麻烦。有2种解决办法:
图13 crop与warp破坏图像原有结构信息
两种办法的示意图如图13,可以看到无论采取那种办法都不好,要么crop后破坏了图像的完整结构,要么warp破坏了图像原始形状信息。回忆RPN网络生成的proposals的方法:对foreground anchors进行bound box regression,那么这样获得的proposals也是大小形状各不相同,即也存在上述问题。所以Faster RCNN中提出了RoI Pooling解决这个问题(需要说明,RoI Pooling确实是从SPP发展而来,但是限于篇幅这里略去不讲,有兴趣的读者可以自行查阅相关论文)。
缩进分析之前先来看看RoI Pooling Layer的caffe prototxt的定义:
[cpp] view plain copy
其中有新参数pooled_w=pooled_h=7,另外一个参数spatial_scale=1/16应该能够猜出大概吧。
缩进RoI Pooling layer forward过程:在之前有明确提到:proposal=[x1, y1, x2, y2]是对应MxN尺度的,所以首先使用spatial_scale参数将其映射回(M/16)x(N/16)大小的feature maps尺度(这里来回多次映射,是有点绕);之后将每个proposal水平和竖直都分为7份,对每一份都进行max pooling处理。这样处理后,即使大小不同的proposal,输出结果都是7x7大小,实现了fixed-length output(固定长度输出)。
图14 proposal示意图
缩进Classification部分利用已经获得的proposal feature maps,通过full connect层与softmax计算每个proposal具体属于那个类别(如人,车,电视等),输出cls_prob概率向量;同时再次利用bounding box regression获得每个proposal的位置偏移量bbox_pred,用于回归更加精确的目标检测框。Classification部分网络结构如图15。
图15 Classification部分网络结构图
从PoI Pooling获取到7x7=49大小的proposal feature maps后,送入后续网络,可以看到做了如下2件事:
这里来看看全连接层InnerProduct layers,简单的示意图如图16,
图16 全连接层示意图
其计算公式如下:
其中W和bias B都是预先训练好的,即大小是固定的,当然输入X和输出Y也就是固定大小。所以,这也就印证了之前Roi Pooling的必要性。到这里,我想其他内容已经很容易理解,不在赘述了。
缩进Faster CNN的训练,是在已经训练好的model(如VGG_CNN_M_1024,VGG,ZF)的基础上继续进行训练。实际中训练过程分为6个步骤:
可以看到训练过程类似于一种“迭代”的过程,不过只循环了2次。至于只循环了2次的原因是应为作者提到:"A similar alternating training can be run for more iterations, but we have observed negligible improvements",即循环更多次没有提升了。接下来本章以上述6个步骤讲解训练过程。
缩进在该步骤中,首先读取RBG提供的预训练好的model(本文使用VGG),开始迭代训练。来看看stage1_rpn_train.pt网络结构,如图17。
图17 stage1_rpn_train.pt
(考虑图片大小,Conv Layers中所有的层都画在一起了,如红圈所示,后续图都如此处理)
与检测网络类似的是,依然使用Conv Layers提取feature maps。整个网络使用的Loss如下:
上述公式中,i表示anchors index,pi表示foreground softmax predict概率,pi*代表对应的GT predict概率(即当第i个anchor与GT间IoU>0.7,认为是该anchor是foreground,pi*=1;反之IoU<0.3时,认为是该anchor是background,pi*=0;至于那些0.3 缩进由于在实际过程中,Ncls和Nreg差距过大,用参数λ平衡二者(如Ncls=256,Nreg=2400时设置λ=10),使总的网络Loss计算过程中能够均匀考虑2种Loss。这里比较重要是Lreg使用的soomth L1 loss,计算公式如下: 缩进了解数学原理后,反过来看图17: 这样,公式与代码就完全对应了。特别需要注意的是,在训练和检测阶段生成和存储anchors的顺序完全一样,这样训练结果才能被用于检测! 缩进在该步骤中,利用之前的RPN网络,获取proposal rois,同时获取foreground softmax probability,如图18,然后将获取的信息保存在python pickle文件中。该网络本质上和检测中的RPN网络一样,没有什么区别。 图18 rpn_test.pt 缩进读取之前保存的pickle文件,获取proposals与foreground probability。从data层输入网络。然后: 这样就可以训练最后的识别softmax与最终的bounding regression了,如图19。 图19 stage1_fast_rcnn_train.pt 之后的训练都是大同小异,不再赘述了。
5.2 通过训练好的RPN网络收集proposals
5.3 训练Fast RCNN网络