opencv图像二值化

#include 
#include 

using namespace std;
//定义灰度图像变量
IplImage *g_GrayImage = NULL;
//定义二值化图片变量
IplImage *g_BinaryImage = NULL;
//定义二值化窗口标题
const char *WindowBinaryTitle = "二值化图片";
//定义滑块响应函数
void on_trackbar(int n1){
//根据传递进来的参数,进行图像二值化操作,参数1-输入图像(必须为单通道灰度图),参数2-输出边缘图像,单通道黑白图,参数3-阀值,参数4-最大值,参数5-运算方法

/*
参数5
Threshold types 

enum

{

CV_THRESH_BINARY = 0, // value = value > threshold ? max_value : 0      

CV_THRESH_BINARY_INV = 1,  // value = value > threshold ? 0 : max_value      

CV_THRESH_TRUNC = 2,  // value = value > threshold ? threshold : value   

CV_THRESH_TOZERO = 3,  // value = value > threshold ? value : 0           

CV_THRESH_TOZERO_INV = 4,  // value = value > threshold ? 0 : value           

CV_THRESH_MASK = 7,

CV_THRESH_OTSU = 8  // use Otsu algorithm to choose the optimal threshold value; combine the flag with one of the above CV_THRESH_* values 

};
*/
cvThreshold(g_GrayImage, g_BinaryImage, n1, 255, CV_THRESH_BINARY);
//显示二值化后的图片
cvShowImage(WindowBinaryTitle, g_BinaryImage);
}
int main(){
//创建源图像窗口标题变量
const char *WindowSrcTitle = "灰度图像";
//创建滑块标题变量
const char *TheSliderTitle = "二值化阀值";
//原图位置
const char *SrcPath = "C:\\Users\\Administrator\\Documents\\visual studio 2013\\Projects\\cv\\Debug\\a.jpg";
//载入原图
IplImage *SrcImage = cvLoadImage(SrcPath,CV_LOAD_IMAGE_UNCHANGED);
//单通道灰度化处理
g_GrayImage = cvCreateImage(cvSize(SrcImage->width,SrcImage->height), IPL_DEPTH_8U, 1);
cvCvtColor(SrcImage, g_GrayImage, CV_BGR2GRAY);

//创建二值图
g_BinaryImage = cvCreateImage(cvGetSize(g_GrayImage), IPL_DEPTH_8U, 1);
//创建原图窗口
cvNamedWindow(WindowSrcTitle, CV_WINDOW_AUTOSIZE);
//显示原图到原图窗口
cvShowImage(WindowSrcTitle, SrcImage);

//创建二值窗口
cvNamedWindow(WindowBinaryTitle, CV_WINDOW_AUTOSIZE);

//创建滑块
int n = 0;
cvCreateTrackbar(TheSliderTitle, WindowBinaryTitle, &n, 254, on_trackbar);

//先执行一次
on_trackbar(1);

cvWaitKey(0);

//销毁窗口,释放图片
cvDestroyWindow(WindowBinaryTitle);
cvDestroyWindow(WindowSrcTitle);
cvReleaseImage(&g_BinaryImage);
cvReleaseImage(&g_GrayImage);
cvReleaseImage(&SrcImage);
return 0;
}

你可能感兴趣的:(算法)