- 深度学习(1)-简单神经网络示例
yyc_audio
深度学习人工智能
我们来看一个神经网络的具体实例:使用Python的Keras库来学习手写数字分类。在这个例子中,我们要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集,图2-1给出了MNIST数据集的一些样本。在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。你不需要现
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- 自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术
学步_技术
自动驾驶自动驾驶人工智能机器学习线控系统
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- Open3D C++系列教程 (七)继承窗口类
吉拉尔
Open3D-GUIc++开发语言guiopen3d
Open3DC++系列教程(七)继承窗口类前置:Open3DC++系列教程(一)环境搭建Open3DC++系列教程(二)第一个GUI窗口Open3DC++系列教程(三)关于程序异常退出的探讨Open3DC++系列教程(四)动画Tick事件Open3DC++系列教程(五)创建菜单栏Open3DC++系列教程(六)菜单栏-文件拾取在之前的几节中介绍了直接在main中使用gui::Window和gui:
- 自动驾驶---Motion Planning之参考线Path平滑
智能汽车人
自动驾驶人工智能
1背景有了由lane_segment插值得到的粗糙参考线,这种参考线是无法输出给下游使用的,需要进一步的处理使得参考线更加平滑,才能供下游控制模块使用。Apollo中共有三种参考线平滑算法,分别为:1.QpSplineSmoother2.SpiralReferenceLineSmoother3.DiscretePointsSmoother目前Apollo中默认配置为最后一种,基于离散点的平滑。这种
- 自动驾驶---Motion Planning之LaneChange
智能汽车人
自动驾驶人工智能
1背景在Apollo中,有比较多的Decider(决策器),上篇博客《自动驾驶---MotionPlanning之Decider》中笔者也大概介绍了每个Deicder的作用。本篇博客笔者主要介绍换道的决策内容,因为在自动驾驶中(严格意义上来讲,目前还属于辅助驾驶),变道的灵活性是用户评价该功能是否好用很重要的一部分,变道迟缓或者激进都是不好的体验,所以本篇博客会结合Apollo中的LaneChan
- 仿生机器人核心技术与大小脑
天机️灵韵
人工智能具身智能硬件设备机器人人工智能具身智能
以下是针对仿生机器人核心技术的结构化总结,涵盖通用核心技术与**“大脑-小脑”专用架构**两大方向:一、机器人通用核心技术这些技术是仿生机器人实现功能的基础,与生物体的“身体能力”对应:1.感知与交互技术多模态传感器融合视觉:3D视觉(如RGB-D相机)、动态目标跟踪(如光流算法)。触觉:柔性电子皮肤、分布式压力传感器(模仿人类皮肤)。听觉:声源定位、噪声抑制(如麦克风阵列)。环境感知:激光雷达(
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- YOLOv11 火焰识别:智能时代的火灾预警新利器
星际编程喵
Python探索之旅YOLOpython目标检测机器学习人工智能开发语言
前言随着人工智能(AI)在各个领域如火如荼发展,图像识别技术也跟着飞速进步。从最初的传统算法到如今的深度学习模型,图像识别在准确性和效率上提升令人惊叹。而在这场技术革命中,YOLO(YouOnlyLookOnce)系列模型无疑扮演举足轻重的角色。今天,我们将目光聚焦在最新的版本——YOLOv11。别误会,YOLOv11可不是什么随便升级。它远不止数字上多了个“1”那么简单。YOLOv11集成许多先
- 如何使用DeepSeek训练模型
LCG元
大模型人工智能
目录准备工作硬件要求软件环境数据收集与预处理数据收集数据预处理模型构建与训练模型构建模型训练模型评估与调优评估指标调优方法部署与应用部署方式应用集成✍️相关问答DeepSeek模型在医疗领域的具体应用案例有哪些?临床辅助诊疗:医患关系的连接桥梁:医疗科研的学术助手:医疗服务体系革新:医学影像诊断:药物研发:基层医疗能力提升:医疗机器人智能化:如何利用DeepSeek进行多模态数据分析?脑图使用De
- 【AI中的数学-人工智能的数学基石】AI的心脏:探索人工智能的算法与核心技术
云博士的AI课堂
AI中的数学人工智能算法数学AI数学大模型
第一章人工智能的数学基石第二节AI的心脏:探索人工智能的算法与核心技术人工智能(AI)的迅猛发展离不开其背后的复杂算法与核心技术。这些算法不仅决定了AI系统的性能和能力,也构成了AI应用的基础。从基础的机器学习算法到先进的深度学习模型,AI的算法生态系统丰富多样,涵盖了广泛的数学原理和计算方法。本节将深入探讨驱动AI进步的关键算法与技术,揭示其工作机制及在实际应用中的重要性。一、机器学习:智能的基
- 农业机器人综述:技术现状、应用场景及未来展望
橙蜂智能
机器人
农业机器人综述:技术现状、应用场景及未来展望引言一、农业机器人的技术现状1.感知模块2.导航与定位模块3.控制与执行模块4.通信与数据传输模块5.决策与人工智能模块6.电源管理与能源模块二、农业机器人的应用场景1.播种与施肥2.植保与除草3.采摘与收获4.土壤和作物监测5.温室管理与环境控制6.多机器人协作三、农业机器人面临的挑战1.成本较高2.环境适应性差3.技术成熟度有待提高4.数据安全和隐私
- 轻量级CAD编辑器CADEditorX发布15.2新版本,新增3D模型爆炸视图新工具等
CodeCraft Studio
3D/2DCAD图像处理编辑器3d计算机视觉
CADEditorX是一个ActiveX组件,用于在支持ActiveX和COM技术的任何开发环境中,将CAD功能添加到网页或正在开发的应用程序中。同时可以查看、编辑、转换、打印和测量DWG、DXF、SVG、HPGL、PDF、STEP、IGES、STL和其他CAD文件。CADEditorX15.2版本现已全新发布,包含许多增强功能和有价值的新功能。下面,让我们看看新版本都有哪些更新:CADEdito
- DeepSeek正重构具身大模型和人形机器人赛道!
Robot251
重构机器人人工智能科技自动驾驶
中国人工智能公司DeepSeek(深度求索)以“低成本、高效率、强开放”的研发范式横空出世,火遍并震撼全球科技圈;DeepSeek展现出来的核心竞争力,除了低成本及推理能力,更重要的是开源模型能力追赶上了最新的闭源模型;而对具身智能领域影响最大的当属于其开源大模型DeepSeek-R1。2024年1月20日,公司发布全球首个完全通过强化学习训练的专注于推理任务的高性能语言模型DeepSeek-R1
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- 代码随想录算法营Day38 | 62. 不同路径,63. 不同路径 II,343. 整数拆分,96. 不同的二叉搜索树
寂枫zero
算法pythonleetcode
62.不同路径这题的限制是机器人在mxn的网格的左上角,每次只能向下走一格或者向右走一格。问到右下角有多少条不同路径。这个动态规划的初始状态是第一行和第一列的格子的值都是1,因为机器人只能向右走一格或者向下走一格,所以第一行和第一列的格子的不同路径数只能是1.而其他格子的路径数取决于每个格子的正上方和左边两个格子的路径数之和,即状态转移公式为dp[i][j]=dp[i-1][j]+dp[i][j-
- 本地DeepSeek模型GGUF文件转换为PyTorch格式
搏博
pytorch人工智能python机器学习windows深度学习
接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之,将GGUF文件转换为PyTorch格式再训练。前提:已经部署好了Deep
- 云计算、大数据、人工智能、物联网、虚拟现实技术、区块链技术
2301_79098963
程序员云计算大数据人工智能
物联网一、物联网的基本概念二、物联网的特征(一)物体感知(二)信息传输(三)智能处理三、物联网关键技术(一)射频识别技术(二)产品电子编码(三)短距离通信技术(四)互联网(五)感知控制技术(六)无线网络技术(七)中间件技术(八)智能处理技术四、物联网的应用领域虚拟现实技术一、VR的基本概念二、VR的特征(一)沉浸性(二)人交互性(三)多感知性(四)想象性(五)自主性三、VR的技术应用(一)在影视娱
- 使用 pip 和 conda 的安装深度学习环境
ZhengXinTang
#深度学习环境pipcondapython
在决定使用pip和conda安装包时,了解这两个包管理器之间的主要区别非常重要。以下是细分:1.在使用conda安装的过程中,可以先参考另外一台机器中对应虚拟环境配置成功的,所设置的镜像源,使用condacofig--show,进行查看,2.设置,将网络下载时,连接时间加长condaconfig--setremote_connect_timeout_secs60condaconfig--setre
- 使用ThreeJS实现的宇宙大爆炸3D粒子特效思路,原理和关键代码解析
软件工程师文艺
前端3djavascript前端
目录1,引言2,技术实现2.1,初始化环境2.2,粒子生成与属性设置2.3,粒子运动与模拟宇宙膨胀2.4,后处理效果3,动画与用户交互4,优化与性能5,结论1,引言在本文中,我们将深入探讨如何利用Three.js库实现一个复杂且视觉冲击力强的宇宙大爆炸3D特效。这个效果不仅模拟了粒子的爆炸、扩散,还模拟了宇宙早期的温度变化和光学现象。实现的效果:ThreeJS实现粒子特效2,技术实现2.1,初始化
- 技术视界 | 探秘双足人形机器人腿部设计的核心与突破
OpenLoong 开源社区
机器人人工智能开源
双足人形机器人作为机器人技术领域的一个重要分支,不仅可以适配人类的生存环境,还可以承担许多危险或重复性工作任务。然而,其腿部设计的复杂性决定了运动性能的上限,同时也是当前技术进步的核心挑战之一。在此,结合行业研究报告,深入探讨双足人形机器人腿部设计的核心技术、创新趋势和未来发展方向。青龙跑步视频一、腿部设计的重要性双足机器人腿部设计直接影响机器人在动态环境中的运动能力和稳定性。其意义体现在:适配复
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- 如何使用Three.js制作3D月球与星空效果
软件工程师文艺
前端javascript3dhtml
目录1.基本设置2.创建星空效果3.创建月球模型4.添加中文3D文字5.光照与相机配置6.动画与控制7.响应式布局8.结语在本文中,我们将一起学习如何利用Three.js实现一个3D月球与星空的效果,并添加一些有趣的元素,比如中文3D文字和互动功能。Three.js是一个强大的JavaScript库,它简化了WebGL的使用,使得在网页上进行3D图形渲染变得更加容易。我们将逐步分析代码,帮助大家理
- DeepSeek从入门到精通-清华【附下载链接】
The丶Star
人工智能AI应用AI模型语言模型人工智能机器学习AI编程AI写作
通过网盘分享的文件:DeepSeek从入门到精通-清华.pdf链接:https://pan.baidu.com/s/1O4Saxx3USwjjLQxww3Dmww?pwd=rk3c提取码:rk3c–来自百度网盘超级会员v9的分享
- MNIST Examples for GGML - Fully connected network
Yongqiang Cheng
ggml-llama.cpp-whisper.cppGGMLMNISTExamplesFullyconnected
MNISTExamplesforGGML-Fullyconnectednetwork1.Build2.MNISTExamplesforGGML2.1.Obtainingthedata2.2.Fullyconnectednetwork2.2.1.TotrainafullyconnectedmodelinPyTorchandsaveitasaGGUFfile2.2.2.Toevaluatethemod
- 一文带你了解人工智能:现状、应用、变革及未来展望
空青726
人工智能chatgptai大数据机器学习深度学习创业创新
近年来,人工智能(AI)的发展势头迅猛,它已经渗透到了我们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,从智能家居到医疗诊断,AI正在改变着我们的生活方式。本文将结合时事,为大家介绍当前人工智能的发展形势、在生活中的应用、人工智能的变革以及未来的发展方向。一、人工智能的发展形势1.深度学习:深度学习是当前AI领域的热门话题。通过模拟人脑神经元之间的相互作用,深度学习算法能够从大量数据中提取出
- vray渲染出图尺寸_3d最终渲染参数设置、vr相片级成品参数值
weixin_39980903
vray渲染出图尺寸
渲染是对模型所赋予的材质、配置各种不同灯光进行着色计算的最终显示的效果,进行3D最终渲染参数设置,可对相片进行处理,以达到自己期望效果的一种修图手法,现在我们来看一下如何进行3d最终渲染参数设置vr相片级成品参数值。全局参数设置:Lights:场景灯光总开关Defaultlights:缺省灯光开关,此选项决定VRay渲染是否使用Max的默认灯光,通常情况下需要被关闭。Hiddenlights:隐藏
- Python调用C语言动态库(DLL)结构体/指针/变量的方法
ENOCH_Q
PYTHONpythonc语言开发语言
文章目录前言一、如何生成C语言动态库DLL第一步:安装编译工具第二步:设计C代码第三步:编译成C语言动态库DLL二、如何使用C语言动态库第一步:python/pytorch调入DLL接口第二步:Python调用DLL函数第三步:Python测试函数三、完整程序与测试结果总结前言在使用python等进行数据处理时,有时需要使用C语言生成的动态库进行数据处理,比如有些算法已经用C语言实现,或有些函数处
- 学习AI大模型用这十种方法,轻松入门
大模型玩家
学习人工智能transformer深度学习langchainagi大模型
AI大模型学习在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。系统化理论知识建构:对于AI大模型的学习,首要任务是对基础理论进行全面而深入的理解。这意味着需要投入大量的时间去研读经典的机器学习和深度学习教材,包括但不限于《统计学
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR