问题题目:人机混合智能中的计算-算计问题
关键词:人机混合智能 计算-算计 深度态势感知 决策
问题描述:
要做一个自己相信的智能系统很难,要做一个别人相信的智能更难。目前,人工智能系统已经广泛应用于诸多领域,部分实现了代替人工作出决策的过程。但现实中的人工智能方法局限于相对“确定性、完全信息、受限环境、可解释性差”的约束,不能满足复杂环境决策的要求。在真实复杂的不确定因素、非完全信息、开放环境中,人类的经验、直觉、灵感与人工智能系统的高效、精确具有合作互补的巨大潜力。
时下的人工智能系统之所以还远远不能达到人们的期望,其根本原因在于构造人工智能的基础是当代数学而不是真正的智能逻辑,首先数学不是逻辑,从数到图再到集合,从算数到微积分到范畴论无一不是建立在公理基础上的数理逻辑体系,而真正的智能逻辑既包括数理逻辑也包括辩证逻辑,还包括未发现的许多逻辑规律,这些还未被发现的逻辑规律既有未来数学的源泉也有真情实感逻辑的涌现,真实智能从不是单纯脑的产物(如狼孩),而是人、物(机器是人造物)、环境相互作用、相互激发唤醒的产物,如一个设计者规划出的智能系统还需要制造者认真理解后的加工实现,更需要使用者因地制宜、有的放矢地灵活应用等等,所以一个好的人机融合智能涉及三者(甚至多者)之间的有效对立统一,既有客观事实(状)态的计算,也有主观价值(趋)势的算计,是一种人、物、环境的深度态势感知系统。而当前的人工智能无论是基于规则(数学模型)的还是基于统计概率(大小数据)的大都是基于计算,而缺乏人类算计的结合与嵌入,进而就远离了智能的真实与灵变。
另外,自然科学及数学等理性工具本质上是一种主体悬置的态势感知体系,人文艺术等感性常常是一种主体高度参与的态势感知体系,人机融合智能涉及到了这两方面,由于智能主体的实时参与,所以更侧重人文艺术感性方面。与西方理性计算思维相比,东方智慧中既有理性的成分也有感性的成分,东方智慧不是单纯的智能计算,而是智能化,重点在“化”,即算计。算计是人类带有动因的理性与感性混合盘算,是已有逻辑形式与未知逻辑形式的融合筹划。由上所述,我们不难看出,人机混合智能中的计算-算计(计算计)问题其实质是东西方智慧的融合与共生。
问题产生的背景:
世界是复杂的,复杂性的世界并不都是科学和计算,而是科学与非科学、理性与感性融合的人物环境系统,智能是自然与人工的结合,准确地说,依目前的数理、物理水平,通过编写计算机程序是不可能实现人类水平的智能的,人工智能是不可能真正理解世界的,必须另辟蹊径。本问题根据东西方文明的特点及现有计算及认知领域成果,提出计算计模型,针对复杂、多域、动态的环境,研究人机混合下的态势感知模型,探索人-机-环境对决策的影响。进一步构建基于理性和感性混合驱动的计算计模型,实现人机混合智能决策。完成人机混合智能及计算计的理论创新、模型创新、方法创新与平台创新,为人机混合智能决策提供方法和理论基础。
最新进展和重要意义:
“智能”这个概念就暗含着个体、有限对整体、对无限的关系。针对智能时代的到来,有人提出,“需要从完全不同的角度来考虑和认识自古以来就存在的行为时空原则”,如传统的人、物、环境关系等。图灵机的缺点是只有刺激-反应而没有选择,只有顺应而没有同化机制。
人机身体融合早期主要应用于躯体残缺人士的假肢方面。近年来开始应用于增强人体力量和耐受能力的动力装甲或动力外骨骼,以及真实人体与虚拟人体的互动控制等领域。
人机行为融合包括人影响机器、机器影响人和人机协同行为三种模式。人工智能、智能机器人和虚拟数字人的快速发展使得人的行为表现往往是爱到机器影响后的结果,驾驶行为是驾驶员与汽车中的导航、自动巡航等汽车驾驶辅助系统融合的结果,社交行为也是社交应用与媒体调节下的混合结果。最近也应用于娱乐、电影人物形象和动作的创作以及直播领域,如依托5G、VR、AR等技术开办虚拟演唱会和控制虚拟人物(avatar)的动作与表情等,演唱者可以在工作室内和VR/AR技术搭建的演唱会场景中举办虚拟现场演唱会。数字孪生(Digital Twin)是对真实物体、生物体或人的虚拟数字建模与实时同步方法。与虚拟仿真和传统虚拟现实不同的是,数字孪生的相关参数是随真实物体、生物体或人的变化相应变化的,因此能够以数字化的方式如实反映真实物体、生物体或人的状态。
人机智能融合系统通过结合机器智能与人的智能的优势来克服现有人工智能系统的不足,是人工智能的一种演进模式。例如,在CommPlan的人-机器人协同决策的框架中,决策模型的一部分通过学习数据获得,而另一部分则由人工手动设定,以准备食物任务进行的实验结果证明,这种人机融合的协同决策在决策时间上显著快于没有人机互动和互动方式仅由开发者根据自己经验设定的方式。脑机接口技术的发展使得其在医疗健康、游戏、虚拟现实等领域的应用广泛开来,突破了传统的单项的脑机交互模式。
近年,人机交互技术的发展与进步也促进了人、机与环境的融合。使得人类所处的环境能够与人类以一种自适应的、可进化的、非侵入的、低负荷的、自然的、甚至是主动的方式进行交互,形成了环境智能或泛在智能(Ambient Intelligence,AmI)。自动驾驶汽车系统是环境智能领域相关技术发展的集中体现,通过对环境的自动感知、理解和执行实现不同程度的自动驾驶。人机融合的目标是有效协同。在人与系统的协同过程中,系统透明度、人对机的信任程度、人机之间的认知一致性会决定有效协同的程度。
在人机融合的研究中,一个重要的方向是自主系统的研究。在执行任务的状态中,自主系统可以根据任务需求,自主完成“感知—判断—决策—行动”的动态过程。例如有科学家们已经开始研究额外的机器手指对大脑神经系统的影响。
人机混合智能的核心问题为:是不是+该不该+好不好的混杂组合问题。其中“是不是”属于客观事实性逻辑计算问题,“该不该”属于主观价值性判定算计问题,“好不好”属于主客观混合性决策计算计问题。当前大家做人机混合智能大都处在做“是不是”(0、1)的逻辑可计算部分,对于主观价值的可判定性及两者的混合计算计性还未有好办法解决。
人机之间、态势之间、感知之间、计算与算计之间常常具有非互惠作用现象,即作用力不等于反作用力,如何量化分析这些等价的相互作用呢?并且,现有的逻辑体系很难判断处理各种意外,如塞翁失马的大逻辑与刻舟求剑的小逻辑。现阶段的人机交互很难实现人机之间的有机融合,仍处于相对简单的低级水平,难点之一就在于价值意向性的形式化。鉴于机器只有局部性事实逻辑,没有人类的整体性价值逻辑,我们可以尝试把人机结合起来进行功能与能力的互补,用人类的算计这把利刃穿透机器计算不时遇到的各种各样的“墙”。
智能是在人与物、环境的交互中逐步形成的,一方面,我们的认知总是在与这个世界发生着融合;另一方面,被误用的计算却也可能会影响我们的认知。1968年图灵奖获得者理查德·哈明就曾一语中的地认识到:“计算的目的不在于数据,而在于洞察事物。”,这里的洞察就包含着对未来的预测与算计。
智能的逻辑与理性的逻辑是不同的逻辑
飞雪连天射白鹿
笑书神侠倚碧鸳