matlab神经网络求解最优化,matlab神经网络拟合函数

matlab神经网络求解最优化,matlab神经网络拟合函数_第1张图片

机器学习 matlab 过拟合 怎么办

如何防止神经网络过拟合,用什么方法可以防止?

你这个问题本来就问的很模糊,你是想问神经网络的过拟合变现什么样还是为什么出现过拟合呢AI爱发猫 www.aifamao.com

为此针对于第一个问题,神经网络的过拟合与支持向量机、高斯混合模型等建模方法的过拟合类似,表现为针对于训练数据集的建模效果很好,而对于测试数据集的建模效果很差,因为过于强大的学习能力是的预测模型中的噪声将有用信息湮没了,致使泛化能力很差。

针对于第二个问题,出现上述现象的主要原因在于隐层节点数太多(隐层节点数越多,学习能力越强),使得预测模型在训练时候将训练数据集中的噪声也挖掘出来了,也就是噪声将有用信息湮没了。

所以在使用神经网络进行建模时一定要处理好模型过拟合的问题,可以一方面增加数据的样本集,另一方面采用交叉验证选择合适的隐层节点数,在精度与泛化能力之间做一个权衡,最常用的方法就是增加正则化项,一定程度上可以防止模型的过拟合问题。

(+机器学习算法与Python学习)

怎么解决cnn matlab小样本过拟合的问题

matlab 中神经网络结果出4小图解析?R?

机器学习中怎么解决过拟合的问题?

MATLAB拟合的神经网络那个Performance的每次都是 epoch为个位数

MATLAB进行人工神经网络拟合求助 140

tic;%计时开始clc;%清屏clearall;%清除所有变量disp('输入层神经元个数:3');%显示输入层神经元个数input=3;disp('中间层神经元个数:3');%显示中间层神经元个数middle=3;disp('输出层神经元个数:1');%显示输出层神经元个数output=1;disp('输入模式123及其对应的输出:');x1=[7.13.22.5];x2=[7.03.42.9];x3=[6.93.63.1];x4=[6.83.82.6];x5=[7.24.02.2];y1=78;y2=65;y3=78;y4=69;y5=72;disp('形成一张供调用的向量表:');X=[x1;x2;x3;x4;x5];%x1,x2,x3,x4,x5向量表X=X/10;Yo=[y1;y2;y3;y4;y5];%y1,y2,y3,y4,y5向量表Yo=Yo/100;disp('初始化连接权矩阵:');w=zeros(input,middle);%输入层与中间层的连接权v=zeros(middle,output);%中间层与输出层的连接权th1=zeros(1,middle);%中间层的阈值th2=zeros(1,output);%输出层的阈值out_middle=zeros(1,middle);%中间层的实际输出out_output=zeros(1,output);%输出层的实际输出delta_output=zeros(1,output);%输出层的差值delta_middle=zeros(1,middle);%中间层的差值disp('显示初始化连接权矩阵w:');w=rands(input,middle);%初始化连接权矩阵w(i,j)disp(w);%显示初始化连接权矩阵w(i,j)disp('显示初始化连接权矩阵v:');v=rand(middle,output);%初始化连接权矩阵v(j,t)disp(v);%显示初始化连接权矩阵v(j,t)disp('中间层阈值矩阵th1:');th1=rand(1,middle);%初始化中间层阈值矩阵th1disp(th1);%显示中间层阈值矩阵th1disp('中间层阈值矩阵th2:');th2=rand(1,output);%初始化输出层阈值矩阵th2disp(th2);%显示中间层阈值矩阵th2sample_bumbers=5;%样本数max_times=10000;%最大训练次数times=0;%训练次数eta=0.1;%学习系数etagamma=0.1;%学习系数gammasample_pointer=0;%样本数指针error=0.02;%误差error_max=0.01;%最大误差fortimes=1:max_times%beginforExternalLoopiferror>error_maxforsample_pointer=1:sample_bumbersX0=X(sample_pointer,:);Y0=Yo(sample_pointer,:);Y=X0*w;%计算中间层的输出:Y=Y-th1;forj=1:middleout_middle(j)=1/(1+exp(-Y(j)));end%计算输出层输出:Y=out_middle*v;Y=Y-th2;fork=1:output%k=1:3out_output(k)=1/(1+exp(-Y(k)));enderror=(Y0(k)-out_output(k))*(Y0(k)-out_output(k))/2;%计算输出层校正误差delta_output:fork=1:output%k=1:3delta_output(k)=(Y(k)-out_output(k))*out_output(k)*(1-out_output(k));end%计算中间层校正误差delta_middle:fork=1:output%k=1:3xy=delta_output*v';delta_middle=xy*out_middle'*(1-out_middle);end%计算下一次的中间层和输出层之间的连接权v(j,k),阈值th2(k)fork=1:output;forj=1:middlev(j,k)=v(j,k)+eta*delta_output(k)*out_middle(j);endth2(k)=th2(k)+eta*delta_output(k);end%计算下一次的输入层和中间层之间的连接权w(i,j),阈值th1(j)forj=1:middle;fori=1:inputw(i,j)=w(i,j)+gamma*X0(i)*delta_middle(j);endth1(j)=th1(j)+gamma*delta_middle(j);endend%endforifelsebreak;end%endforelseend%endforExternalLoopdisp('显示结果:');disp('训练次数times:');disp(times);disp('输出权值w');disp(w);disp('输出权值v');disp(v);disp('全局误差error:');disp(error);disp('运行结束了!

');toc;%计时结束,并输出程序的运行时间输出结果为:输入层神经元个数:3中间层神经元个数:3输出层神经元个数:1输入模式123及其对应的输出:形成一张供调用的向量表:初始化连接权矩阵:显示初始化连接权矩阵w:0.5695-0.6483-0.6946-0.05730.4435-0.3178-0.9285-0.05300.2148显示初始化连接权矩阵v:0.19170.73840.2428中间层阈值矩阵th1:0.91740.26910.7655中间层阈值矩阵th2:0.1887显示结果:训练次数times:6输出权值w0.5376-0.6779-0.7311-0.07360.4283-0.3365-0.9406-0.06430.2009输出权值v0.13280.67080.2027全局误差error:0.0097运行结束了!

Elapsedtimeis0.263732seconds.。

 

你可能感兴趣的:(matlab,神经网络,机器学习)