MATLAB---回归分析

MATLAB---回归分析_第1张图片

MATLAB---回归分析_第2张图片
MATLAB---回归分析_第3张图片
MATLAB---回归分析_第4张图片
MATLAB---回归分析_第5张图片
MATLAB---回归分析_第6张图片
MATLAB---回归分析_第7张图片
MATLAB---回归分析_第8张图片
MATLAB---回归分析_第9张图片
MATLAB---回归分析_第10张图片
MATLAB---回归分析_第11张图片
MATLAB---回归分析_第12张图片
MATLAB---回归分析_第13张图片
MATLAB---回归分析_第14张图片
MATLAB---回归分析_第15张图片

%--------------------------------------------------------------------------
%     回归分析
%--------------------------------------------------------------------------


%% examp19.1-1
mdl = LinearModel;
methods(mdl)
properties(mdl)

%% examp19.1-2
nlm = NonLinearModel
methods(nlm)
properties(nlm)

%% examp19.2-1 一元线性回归
ClimateData = xlsread('examp19_2_1.xls');
x = ClimateData(:, 1);
y = ClimateData(:, 5);
figure;
plot(x, y, 'k.', 'Markersize', 15);
xlabel('年平均气温(x)');
ylabel('全年日照时数(y)');
R = corrcoef(x, y)

mdl1 = LinearModel.fit(x,y)
figure;
mdl1.plot
xlabel('年平均气温(x)');
ylabel('全年日照时数(y)');
title('');
legend('原始散点','回归直线','置信区间');

xnew = [5,25]';
ynew = mdl1.predict(xnew)


Res = mdl1.Residuals;
Res_Stu = Res.Studentized;
Res_Stan = Res.Standardized;
figure;
subplot(2,3,1);
plot(Res_Stu,'kx');
refline(0,-2);
refline(0,2);
title('(a) 学生化残差图')
xlabel('观测序号');ylabel('学生化残差');
subplot(2,3,2);
mdl1.plotDiagnostics('cookd');
title('(b) Cook距离图')
xlabel('观测序号');ylabel('Cook距离');
subplot(2,3,3);
mdl1.plotDiagnostics('covratio');
title('(c) Covratio统计量图');
xlabel('观测序号');ylabel('Covratio统计量');
subplot(2,3,4);
plot(Res_Stan,'kx');
refline(0,-2);
refline(0,2);
title('(d) 标准化残差图');
xlabel('观测序号');ylabel('标准化残差');
subplot(2,3,5);
mdl1.plotDiagnostics('dffits');
title('(e) Dffits统计量图');
xlabel('观测序号');ylabel('Dffits统计量');
subplot(2,3,6);
mdl1.plotDiagnostics('leverage');
title('(f) 杠杆值图');
xlabel('观测序号');ylabel('杠杆值');

id = find(abs(Res_Stu)>2);
mdl2 = LinearModel.fit(x,y,'Exclude',id)
figure;
mdl2.plot;
xlabel('年平均气温(x)');
ylabel('全年日照时数(y)');
title('');
legend('剔除异常数据后散点','回归直线','置信区间');

figure;                                  % 新建一个图形窗口
plot(x, y, 'ko');                        % 画原始数据散点
hold on;                                 % 图形叠加
xnew = sort(x);                          % 为了画图的需要将x从小到大排序
yhat1 = mdl1.predict(xnew);              % 计算模型1的拟合值
yhat2 = mdl2.predict(xnew);              % 计算模型2的拟合值
plot(xnew, yhat1, 'r--','linewidth',3);  % 画原始数据对应的回归直线,红色虚线
plot(xnew, yhat2, 'linewidth', 3);       % 画剔除异常数据后的回归直线,蓝色实线
legend('原始数据散点','原始数据回归直线','剔除异常数据后回归直线')    % 为图形加标注框
xlabel('年平均气温(x)');                   % 为X轴加标签
ylabel('全年日照时数(y)'); 

figure;
subplot(2,3,1);
mdl2.plotResiduals('caseorder');
title('(a) 残差值序列图');
xlabel('观测序号');ylabel('残差');
subplot(2,3,2);
mdl2.plotResiduals('fitted');
title('(b) 残差与拟合值图');
xlabel('拟合值');ylabel('残差');
subplot(2,3,3);
plot(x,mdl2.Residuals.Raw,'kx');
line([0,25],[0,0],'color','k','linestyle',':');
title('(c) 残差与自变量图');
xlabel('自变量值');ylabel('残差');
subplot(2,3,4);
mdl2.plotResiduals('histogram');
title('(d) 残差直方图');
xlabel('残差r');ylabel('f(r)');
subplot(2,3,5);
mdl2.plotResiduals('probability');
title('(e) 残差正态概率图');
xlabel('残差');ylabel('概率');
subplot(2,3,6);
mdl2.plotResiduals('lagged');
title('(f) 残差与滞后残差图');
xlabel('滞后残差');ylabel('残差');

mdl3 = LinearModel.fit(x,y,'RobustOpts','on')
xnew = sort(x);
yhat1 = mdl1.predict(xnew);
yhat3 = mdl3.predict(xnew);
plot(x, y, 'ko');
hold on;
plot(xnew, yhat1, 'r--','linewidth',3);
plot(xnew, yhat3, 'linewidth', 3);
legend('原始数据散点','非稳健拟合回归直线','稳健拟合回归直线');
xlabel('年平均气温(x)');
ylabel('全年日照时数(y)');

%% examp19.3-1 一元非线性回归
HeadData = xlsread('examp19_3_1.xls'); 
x = HeadData(:, 4); 
y = HeadData(:, 9);
plot(x, y, 'k.');
xlabel('年龄(x)');
ylabel('头围(y)');

HeadCir2 = @(beta, x)beta(1)*exp(beta(2)./(x+beta(3)));
beta0 = [53,-0.2604,0.6276];
opt = statset;
opt.Robust = 'on';
nlm1 = NonLinearModel.fit(x,y,HeadCir2,beta0,'Options',opt)
%或nlm1 = NonLinearModel.fit(x,y,@HeadCir1,beta0,'Options',opt)

xnew = linspace(0,16,50)';
ynew = nlm1.predict(xnew);
figure;
plot(x, y, 'k.');
hold on;
plot(xnew, ynew, 'linewidth', 3);
xlabel('年龄(x)');
ylabel('头围(y)');
legend('原始数据散点','非线性回归曲线');

Alpha = 0.05;
ci1 = nlm1.coefCI(Alpha)

[yp,ypci] = nlm1.predict(xnew,'Prediction','observation');
yup = ypci(:,2);
ydown = ypci(:,1);

figure;
hold on;
h1 = fill([xnew;flipud(xnew)],[yup;flipud(ydown)],[0.5,0.5,0.5]);
set(h1,'EdgeColor','none','FaceAlpha',0.5);

plot(xnew,yup,'r--','LineWidth',2);
plot(xnew,ydown,'b-.','LineWidth',2);
plot(xnew, yp, 'k','linewidth', 2);

grid on;
ylim([32, 57]);
xlabel('年龄(x)'); 
ylabel('头围(y)');
h2 = legend('预测区间','预测区间上限','预测区间下限','回归曲线');
set(h2, 'Location', 'SouthEast');

figure;
subplot(1,2,1);
nlm1.plotResiduals('histogram');
title('(a) 残差直方图');
xlabel('残差r');ylabel('f(r)');
subplot(1,2,2);
nlm1.plotResiduals('probability');
title('(b) 残差正态概率图');
xlabel('残差');ylabel('概率');

Res2 = nlm1.Residuals;
Res_Stu2 = Res2.Studentized;
id2 = find(abs(Res_Stu2)>2);

nlm2 = NonLinearModel.fit(x,y,HeadCir2,beta0,'Exclude',id2,'Options',opt)
xb = x;  xb(id2) = [];
yb = y;  yb(id2) = [];
ynew = nlm2.predict(xnew);
figure;
plot(xb, yb, 'k.');
hold on;
plot(xnew, ynew, 'linewidth', 3);
xlabel('年龄(x)');
ylabel('头围(y)');
legend('原始数据散点','非线性回归曲线');

%% examp19.4-1 多元线性和广义线性回归
data = xlsread('examp19_4_1.xls');
X = data(:,3:7);
y = data(:,2);
[R,P] = corrcoef([y,X])
VarNames = {'y','x1','x2','x3','x4','x5'};
matrixplot(R,'FigShap','e','FigSize','Auto', ...
    'ColorBar','on','XVar', VarNames,'YVar',VarNames);

mmdl1 = LinearModel.fit(X,y)

Rx = corrcoef(X);
VIF = diag(inv(Rx))

figure;
subplot(1,2,1);
mmdl1.plotResiduals('histogram');
title('(a) 残差直方图');
xlabel('残差r');ylabel('f(r)');
subplot(1,2,2);
mmdl1.plotResiduals('probability');
title('(b) 残差正态概率图');
xlabel('残差');ylabel('概率');

Res3 = mmdl1.Residuals;
Res_Stu3 = Res3.Studentized;
id3 = find(abs(Res_Stu3)>2);

Model = 'poly10101';
mmdl2 = LinearModel.fit(X,y,Model,'Exclude',id3)

Model = 'poly22222';
mmdl3 = LinearModel.fit(X,y,Model)

figure;
plot(y,'ko');
hold on
plot(mmdl1.predict(X),':');
plot(mmdl2.predict(X),'r-.');
plot(mmdl3.predict(X),'k');
legend('y的原始散点','5元线性回归拟合',...
    '3元线性回归拟合','完全二次回归拟合');
xlabel('y的观测序号'); 
ylabel('y'); 

mmdl4 = LinearModel.stepwise(X,y, 'poly22222')
yfitted = mmdl4.Fitted;
figure;
plot(y,'ko');
hold on
plot(yfitted,':','linewidth',2);
legend('y的原始散点','逐步回归拟合');
xlabel('y的观测序号');
ylabel('y');    

model = [0 0 0 0 0
         1 0 0 0 0
         0 1 0 0 0
         0 0 0 0 1
         2 0 0 0 0
         1 1 0 0 0
         0 1 1 0 0
         1 0 0 1 0
         0 0 0 2 0
         1 0 0 0 1
         0 1 0 0 1
         0 0 1 0 1
         0 0 0 0 2];
mmdl5 = LinearModel.fit(X,y,model)

%% examp19.5-1 多元非线性回归
modelfun = @(b,x)sqrt((x(:,1)-b(1)).^2+(x(:,2)-b(2)).^2+b(3).^2)/(60*b(4))+b(5);
% modelfun = 'y ~ sqrt((x1-b1)^2 + (x2-b2)^2 + b3^2)/(60*b4)+b5';
xyt = [500    3300    21    9
       300     200    19   29
       800    1600    14   51
      1400    2200    13   17
      1700     700    11   46
      2300    2800    14   47
      2500    1900    10   14
      2900     900    11   46
      3200    3100    17   57
      3400     100    16   49];
xy = xyt(:,1:2); Minutes = xyt(:,3); Seconds = xyt(:,4);
T = Minutes + Seconds/60;

b0 = [1000 100 1 1 1];
mnlm = NonLinearModel.fit(xy,T,modelfun,b0) ```

```clike

mdl = 


线性回归模型:
    y ~ 0

系数:
逻辑 "与" (&&)"或" (||)运算符的操作数必须可转换为标量逻辑值。

出错 classreg.regr.CompactLinearModel/dispBody (533)
            if model.MSE>0 && ~isnan(model.MSE)

出错 LinearModel/disp (294)
            dispBody(model)

出错 Chapter19 (8)
mdl = LinearModel
 
 

```bash
function    y = HeadCir1(beta, x)
% CopyRight:xiezhh
y = beta(1) * exp(beta(2) ./ (x + beta(3)));``
`

```handlebars
function matrixplot(data,varargin)
%   根据实值矩阵绘制色块图,用丰富的颜色和形状形象的展示矩阵元素值的大小。
%
%   matrixplot(data) 绘制矩阵色块图,data为实值矩阵,每一个元素对应一个色块,色
%                    块颜色由元素值大小决定。
%
%   matrixplot(data, 'PARAM1',val1, 'PARAM2',val2, ...) 
%          用成对出现的参数名/参数值控制色块的各项属性。可用的参数名/参数值如下:
%          'FigShape' --- 设定色块的形状,其参数值为:
%                'Square'  --- 方形(默认)
%                'Circle'  --- 圆形
%                'Ellipse' --- 椭圆形
%                'Hexagon' --- 六边形
%                'Dial'    --- 表盘形
%
%          'FigSize' --- 设定色块的大小,其参数值为:
%                'Full'    --- 最大色块(默认)
%                'Auto'    --- 根据矩阵元素值自动确定色块大小
%
%          'FigStyle' --- 设定矩阵图样式,其参数值为:
%                'Auto'    --- 矩形矩阵图(默认)
%                'Tril'    --- 下三角矩阵图
%                'Triu'    --- 上三角矩阵图
%
%          'FillStyle' --- 设定色块填充样式,其参数值为:
%                'Fill'    --- 填充色块内部(默认)
%                'NoFill'  --- 不填充色块内部
%
%          'DisplayOpt' --- 设定是否在色块中显示矩阵元素值,其参数值为:
%                'On'      --- 显示矩阵元素值(默认)
%                'Off'     --- 不显示矩阵元素值
%
%          'TextColor' --- 设定文字的颜色,其参数值为:
%                表示单色的字符('r','g','b','y','m','c','w','k',默认为黑色
%                13列的红、绿、蓝三元色灰度值向量([r,g,b]%                'Auto'    --- 根据矩阵元素值自动确定文字颜色
%
%          'XVarNames' --- 设定X轴方向需要显示的变量名(默认为X1,X2,...),其参数值为:
%                字符串矩阵或字符串元胞数组,若为字符串矩阵,其行数应与data的列数相同
%                若为字符串元胞数组,其长度应与data的列数相同。
%
%          'YVarNames' --- 设定Y轴方向需要显示的变量名(默认为Y1,Y2,...),其参数值为:
%                字符串矩阵或字符串元胞数组,若为字符串矩阵,其行数应与data的行数相同
%                若为字符串元胞数组,其长度应与data的行数相同。
%
%          'ColorBar' --- 设定是否显示颜色条,其参数值为:
%                'On'      --- 显示颜色条
%                'Off'     --- 不显示颜色条(默认)
%
%          'Grid' --- 设定是否显示网格线,其参数值为:
%                'On'      --- 显示网格线(默认)
%                'Off'     --- 不显示网格线
%
%   Example:
%   x = [1,-0.2,0.3,0.8,-0.5
%        -0.2,1,0.6,-0.7,0.2
%         0.3,0.6,1,0.5,-0.3
%         0.8,-0.7,0.5,1,0.7
%        -0.5,0.2,-0.3,0.7,1];
%   matrixplot(x);
%   matrixplot(x,'DisplayOpt','off');
%   matrixplot(x,'FillStyle','nofill','TextColor','Auto');
%   matrixplot(x,'TextColor',[0.7,0.7,0.7],'FigShap','s','FigSize','Auto','ColorBar','on');
%   matrixplot(x,'TextColor','k','FigShap','d','FigSize','Full','ColorBar','on','FigStyle','Triu');
%   XVarNames = {'xiezhh','heping','keda','tust','tianjin'};
%   matrixplot(x,'FigShap','e','FigSize','Auto','ColorBar','on','XVarNames',XVarNames,'YVarNames',XVarNames);
%
%   CopyRight:xiezhh(谢中华),2013.01.24编写

% 对第一个输入参数类型进行判断
if ~ismatrix(data) || ~isreal(data)
    error('输入参数类型不匹配:第一个输入参数应为实值矩阵');
end

% 解析成对出现的参数名/参数值
[FigShape,FigSize,FigStyle,FillStyle,DisplayOpt,TextColor,XVarNames,...
    YVarNames,ColorBar,GridOpt] = parseInputs(varargin{:});

% 产生网格数据
[m,n] = size(data);
[x,y] = meshgrid(0:n,0:m);
data = data(:);
maxdata = nanmax(data);
mindata = nanmin(data);
rangedata = maxdata - mindata;
if isnan(rangedata)
    warning('MATLAB:warning1','请检查您输入的矩阵是否合适!');
    return;
end
z = zeros(size(x))+0.2;
sx = x(1:end-1,1:end-1)+0.5;
sy = y(1:end-1,1:end-1)+0.5;

if strncmpi(FigStyle,'Tril',4)
    z(triu(ones(size(z)),2)>0) = NaN;
    sx(triu(ones(size(sx)),1)>0) = NaN;
elseif strncmpi(FigStyle,'Triu',4)
    z(tril(ones(size(z)),-2)>0) = NaN;
    sx(tril(ones(size(sx)),-1)>0) = NaN;
end
sx = sx(:);
sy = sy(:);
id = isnan(sx) | isnan(data);
sx(id) = [];
sy(id) = [];
data(id) = [];

if isempty(XVarNames)
    XVarNames = strcat('X',cellstr(num2str((1:n)')));
else
    if (iscell(XVarNames) && (numel(XVarNames) ~= n)) || (~iscell(XVarNames) && (size(XVarNames,1) ~= n))
        error('X轴方向变量名应为字符串矩阵或字符串元胞数组,其长度与输入矩阵的列数相同');
    end
end
if isempty(YVarNames)
    YVarNames = strcat('Y',cellstr(num2str((1:m)')));
else
    if (iscell(YVarNames) && (numel(YVarNames) ~= m)) || (~iscell(YVarNames) && (size(YVarNames,1) ~= m))
        error('Y轴方向变量名应为字符串矩阵或字符串元胞数组,其长度与输入矩阵的行数相同');
    end
end

% 绘图
figure('color','w',...
    'units','normalized',...
    'pos',[0.289165,0.154948,0.409956,0.68099]);
axes('units','normalized','pos',[0.1,0.022,0.89,0.85]);
if strncmpi(GridOpt,'On',2)
    mesh(x,y,z,...
        'EdgeColor',[0.7,0.7,0.7],...
        'FaceAlpha',0,...
        'LineWidth',1);   % 参考网格线
end
hold on;
axis equal;
axis([-0.1,n+0.1,-0.1,m+0.1,-0.5,0.5]);
view(2);
% 设置X轴和Y轴刻度位置及标签
set(gca,'Xtick',(1:n)-0.5,...
    'XtickLabel',XVarNames,...
    'Ytick',(1:m)-0.5,...
    'YtickLabel',YVarNames,...
    'XAxisLocation','top',...
    'YDir','reverse',...
    'Xcolor',[0.7,0.7,0.7],...
    'Ycolor',[0.7,0.7,0.7],...
    'TickLength',[0,0]);
axis off

% 绘制填充色块
if strncmpi(FillStyle,'Fill',3)
    MyPatch(sx',sy',data',FigShape,FigSize);
end

% 显示数值文本信息
if strncmpi(DisplayOpt,'On',2)
    str = num2str(data,'%4.2f');
    scale = 0.1*max(n/m,1)/(max(m,n)^0.55);
    if strncmpi(TextColor,'Auto',3)
        ColorMat = get(gcf,'ColorMap');
        nc = size(ColorMat,1);
        cid = fix(mapminmax(data',0,1)*nc)+1;
        cid(cid<1) = 1;
        cid(cid>nc) = nc;
        TextColor = ColorMat(cid,:);
        for i = 1:numel(data)
            text(sx(i),sy(i),0.1,str(i,:),...
                'FontUnits','normalized',...
                'FontSize',scale,...
                'fontweight','bold',...
                'HorizontalAlignment','center',...
                'Color',TextColor(i,:));
        end
    else
        text(sx,sy,0.1*ones(size(sx)),str,...
            'FontUnits','normalized',...
            'FontSize',scale,...
            'fontweight','bold',...
            'HorizontalAlignment','center',...
            'Color',TextColor);
    end
end

% 设置X轴和Y轴刻度标签的缩进方式
MyTickLabel(gca,FigStyle);

% 添加颜色条
if strncmpi(ColorBar,'On',2)
    if any(strncmpi(FigStyle,{'Auto','Triu'},4))
        colorbar('Location','EastOutside');
    else
        colorbar('Location','SouthOutside');
    end
end
end

% ---------------------------------------------------
%  调整坐标轴刻度标签子函数
% ---------------------------------------------------
function MyTickLabel(ha,tag)

%   根据显示范围自动调整坐标轴刻度标签的函数
%   ha   坐标系句柄值
%   tag  调整坐标轴刻度标签的标识字符串,可用取值如下:
%        'Auto' --- 将x轴刻度标签旋转90度,y轴刻度标签不作调整
%        'Tril' --- 将x轴刻度标签旋转90度,并依次缩进,y轴刻度标签不作调整
%        'Triu' --- 将x轴刻度标签旋转90度,y轴刻度标签依次缩进
%   Example:
%   MyTickLabel(gca,'Tril');
%
%   CopyRight:xiezhh(谢中华),2013.1编写

if ~ishandle(ha)
    warning('MATLAB:warning2','第一个输入参数应为坐标系句柄');
    return;
end

if ~strcmpi(get(ha,'type'),'axes')
    warning('MATLAB:warning3','第一个输入参数应为坐标系句柄');
    return;
end

axes(ha);
xstr = get(ha,'XTickLabel');
xtick = get(ha,'XTick');
xl = xlim(ha);
ystr = get(ha,'YTickLabel');
ytick = get(ha,'YTick');
yl = ylim(ha);
set(ha,'XTickLabel',[],'YTickLabel',[]);
x = zeros(size(ytick)) + xl(1) - range(xl)/30;
y = zeros(size(xtick)) + yl(1) - range(yl)/70;
nx = numel(xtick);
ny = numel(ytick);

if strncmpi(tag,'Tril',4)
    y = y + (1:nx) - 1;
elseif strncmpi(tag,'Triu',4)
    x = x + (1:ny) - 1;
end

text(xtick,y,xstr,...
    'rotation',90,...
    'Interpreter','none',...
    'color','r',...
    'HorizontalAlignment','left');
text(x,ytick,ystr,...
    'Interpreter','none',...
    'color','r',...
    'HorizontalAlignment','right');
end

% ---------------------------------------------------
%  根据散点数据绘制3维色块图子函数
% ---------------------------------------------------
function  MyPatch(x,y,z,FigShape,FigSize)
%   根据散点数据绘制3维色块图
%   MyPatch(x,y,z,FigShape,FigSize)  x,y,z是实值数组,用来指定色块中心点三维
%          坐标。FigShape是字符串变量,用来指定色块形状。
%          FigSize是字符串变量,用来指定色块大小。
%
%   CopyRight:xiezhh(谢中华), 2013.01 编写
%
%   Example:
%         x = rand(10,1);
%         y = rand(10,1);
%         z = rand(10,1);
%         MyPatch(x,y,z,'s','Auto');
%

% 输入参数类型判断
if nargin < 3
    error('至少需要三个输入参数');
end
if ~isreal(x) || ~isreal(y) || ~isreal(z)
    error('前三个输入应为实值数组');
end

n = numel(z);
if numel(x) ~= n || numel(y) ~= n
    error('坐标应等长');
end

if strncmpi(FigSize,'Auto',3) && ~strncmpi(FigShape,'Ellipse',1)
    id = (z == 0);
    x(id) = [];
    y(id) = [];
    z(id) = [];
end
if isempty(z)
    return;
end

% 求色块顶点坐标
rab1 = ones(size(z));
maxz = max(abs(z));
if maxz == 0
    maxz = 1;
end
rab2 = abs(z)/maxz;
if strncmpi(FigShape,'Square',1)
    % 方形
    if strncmpi(FigSize,'Full',3)
        r = rab1;
    else
        r = sqrt(rab2);
    end
    SquareVertices(x,y,z,r);
elseif strncmpi(FigShape,'Circle',1)
    % 圆形
    if strncmpi(FigSize,'Full',3)
        r = 0.5*rab1;
    else
        r = 0.5*sqrt(rab2);
    end
    CircleVertices(x,y,z,r);
elseif strncmpi(FigShape,'Ellipse',1)
    % 椭圆形
    a = 0.48 + rab2*(0.57-0.48);
    b = (1-rab2).*a;
    EllipseVertices(x,y,z,a,b);
elseif strncmpi(FigShape,'Hexagon',1)
    % 六边形
    if strncmpi(FigSize,'Full',3)
        r = 0.5*rab1;
    else
        r = 0.5*sqrt(rab2);
    end
    HexagonVertices(x,y,z,r);
else
    % 表盘形
    if strncmpi(FigSize,'Full',3)
        r = 0.45*rab1;
    else
        r = 0.45*sqrt(rab2);
    end
    DialVertices(x,y,z,r);
end
end
%--------------------------------------------------
% 求色块顶点坐标并绘制色块的子函数
%--------------------------------------------------
function SquareVertices(x,y,z,r)
% 方形
hx = r/2;
hy = hx;
Xp = [x-hx;x-hx;x+hx;x+hx;x-hx];
Yp = [y-hy;y+hy;y+hy;y-hy;y-hy];
Zp = repmat(z,[5,1]);
patch(Xp,Yp,Zp,'FaceColor','flat','EdgeColor','flat');
end

function CircleVertices(x,y,z,r)
% 圆形
t = linspace(0,2*pi,30)';
m = numel(t);
Xp = repmat(x,[m,1])+cos(t)*r;
Yp = repmat(y,[m,1])+sin(t)*r;
Zp = repmat(z,[m,1]);
patch(Xp,Yp,Zp,'FaceColor','flat','EdgeColor','flat');
end

function EllipseVertices(x,y,z,a,b)
% 椭圆形
t = linspace(0,2*pi,30)';
m = numel(t);
t0 = -sign(z)*pi/4;
t0 = repmat(t0,[m,1]);
x0 = cos(t)*a;
y0 = sin(t)*b;
Xp = repmat(x,[m,1]) + x0.*cos(t0) - y0.*sin(t0);
Yp = repmat(y,[m,1]) + x0.*sin(t0) + y0.*cos(t0);
Zp = repmat(z,[m,1]);
patch(Xp,Yp,Zp,'FaceColor','flat','EdgeColor','flat');
end

function HexagonVertices(x,y,z,r)
% 六边形
t = linspace(0,2*pi,7)';
m = numel(t);
Xp = repmat(x,[m,1])+cos(t)*r;
Yp = repmat(y,[m,1])+sin(t)*r;
Zp = repmat(z,[m,1]);
patch(Xp,Yp,Zp,'FaceColor','flat','EdgeColor','flat');
end

function DialVertices(x,y,z,r)
% 表盘形
% 绘制表盘扇形
maxz = max(abs(z));
t0 = z*2*pi/maxz-pi/2;
t0 = cell2mat(arrayfun(@(x)linspace(-pi/2,x,30)',t0,'UniformOutput',0));
m = size(t0,1);
r0 = repmat(r,[m,1]);
Xp = [x;repmat(x,[m,1]) + r0.*cos(t0);x];
Yp = [y;repmat(y,[m,1]) + r0.*sin(t0);y];
Zp = repmat(z,[m+2,1]);
patch(Xp,Yp,Zp,'FaceColor','flat','EdgeColor',[0,0,0]);

% 绘制表盘圆周
t = linspace(0,2*pi,30)';
m = numel(t);
Xp = repmat(x,[m,1])+cos(t)*r;
Yp = repmat(y,[m,1])+sin(t)*r;
Zp = repmat(z,[m,1]);
Xp = [Xp;flipud(Xp)];
Yp = [Yp;flipud(Yp)];
Zp = [Zp;flipud(Zp)];
patch(Xp,Yp,Zp,'FaceColor','flat','EdgeColor',[0,0,0]);
end

%--------------------------------------------------------------------------
%  解析输入参数子函数1
%--------------------------------------------------------------------------
function [FigShape,FigSize,FigStyle,FillStyle,DisplayOpt,TextColor,...
    XVarNames,YVarNames,ColorBar,GridOpt] = parseInputs(varargin)

if mod(nargin,2)~=0
    error('输入参数个数不对,应为成对出现');
end
pnames = {'FigShape','FigSize','FigStyle','FillStyle','DisplayOpt',...
    'TextColor','XVarNames','YVarNames','ColorBar','Grid'};
dflts =  {'Square','Full','Auto','Fill','On','k','','','Off','On'};
[FigShape,FigSize,FigStyle,FillStyle,DisplayOpt,TextColor,XVarNames,...
    YVarNames,ColorBar,GridOpt] = parseArgs(pnames, dflts, varargin{:});

validateattributes(FigShape,{'char'},{'nonempty'},mfilename,'FigShape');
validateattributes(FigSize,{'char'},{'nonempty'},mfilename,'FigSize');
validateattributes(FigStyle,{'char'},{'nonempty'},mfilename,'FigStyle');
validateattributes(FillStyle,{'char'},{'nonempty'},mfilename,'FillStyle');
validateattributes(DisplayOpt,{'char'},{'nonempty'},mfilename,'DisplayOpt');
validateattributes(TextColor,{'char','numeric'},{'nonempty'},mfilename,'TextColor');
validateattributes(XVarNames,{'char','cell'},{},mfilename,'XVarNames');
validateattributes(YVarNames,{'char','cell'},{},mfilename,'YVarNames');
validateattributes(ColorBar,{'char'},{'nonempty'},mfilename,'ColorBar');
validateattributes(GridOpt,{'char'},{'nonempty'},mfilename,'Grid');
if ~any(strncmpi(FigShape,{'Square','Circle','Ellipse','Hexagon','Dial'},1))
    error('形状参数只能为Square, Circle, Ellipse, Hexagon, Dial 之一');
end
if ~any(strncmpi(FigSize,{'Full','Auto'},3))
    error('图形大小参数只能为Full, Auto 之一');
end
if ~any(strncmpi(FigStyle,{'Auto','Tril','Triu'},4))
    error('图形样式参数只能为Auto, Tril, Triu 之一');
end
if ~any(strncmpi(FillStyle,{'Fill','NoFill'},3))
    error('图形填充样式参数只能为Fill, NoFill 之一');
end
if ~any(strncmpi(DisplayOpt,{'On','Off'},2))
    error('显示数值参数只能为On,Off 之一');
end
if ~any(strncmpi(ColorBar,{'On','Off'},2))
    error('显示颜色条参数只能为On,Off 之一');
end
if ~any(strncmpi(GridOpt,{'On','Off'},2))
    error('显示网格参数只能为On,Off 之一');
end
end

%--------------------------------------------------------------------------
%  解析输入参数子函数2
%--------------------------------------------------------------------------
function [varargout] = parseArgs(pnames,dflts,varargin)
%   Copyright 2010-2011 The MathWorks, Inc.
%   $Revision: 1.1.6.2 $  $Date: 2011/05/09 01:27:26 $

% Initialize some variables
nparams = length(pnames);
varargout = dflts;
setflag = false(1,nparams);
unrecog = {};
nargs = length(varargin);

dosetflag = nargout>nparams;
dounrecog = nargout>(nparams+1);

% Must have name/value pairs
if mod(nargs,2)~=0
    m = message('stats:internal:parseArgs:WrongNumberArgs');
    throwAsCaller(MException(m.Identifier, '%s', getString(m)));
end

% Process name/value pairs
for j=1:2:nargs
    pname = varargin{j};
    if ~ischar(pname)
        m = message('stats:internal:parseArgs:IllegalParamName');
        throwAsCaller(MException(m.Identifier, '%s', getString(m)));
    end
    
    mask = strncmpi(pname,pnames,length(pname)); % look for partial match
    if ~any(mask)
        if dounrecog
            % if they've asked to get back unrecognized names/values, add this
            % one to the list
            unrecog((end+1):(end+2)) = {varargin{j} varargin{j+1}};
            continue
        else
            % otherwise, it's an error
            m = message('stats:internal:parseArgs:BadParamName',pname);
            throwAsCaller(MException(m.Identifier, '%s', getString(m)));
        end
    elseif sum(mask)>1
        mask = strcmpi(pname,pnames); % use exact match to resolve ambiguity
        if sum(mask)~=1
            m = message('stats:internal:parseArgs:AmbiguousParamName',pname);
            throwAsCaller(MException(m.Identifier, '%s', getString(m)));
        end
    end
    varargout{mask} = varargin{j+1};
    setflag(mask) = true;
end

% Return extra stuff if requested
if dosetflag
    varargout{nparams+1} = setflag;
    if dounrecog
        varargout{nparams+2} = unrecog;
    end
end
end```

```css
function TextHandle = rotateticklabel(ha,tag,rot)

%   旋转坐标轴刻度标签的函数
%   ha   坐标系句柄(默认为当前坐标系)
%   tag  坐标轴标识字符串('X''Y'),默认旋转X轴标签
%   rot  旋转角度(单位:度)
%
%   Example:
%   x = 0:0.05:2*pi;
%   y = sin(x);
%   plot(x,y);
%   str = '这里是0|这里是1|这里是2|这里是3|这里是4|这里是5|这里是6|这里是7';
%   set(gca,'xtick',0:7,'xticklabel',str);
%
%   rotateticklabel(gca,'x',-30);
%
%   CopyRight:xiezhh(谢中华)

if ~ishandle(ha)
    warning('第一个输入参数应为坐标系句柄');
    return;
end

if ~strcmpi(get(ha,'type'),'axes')
    warning('第一个输入参数应为坐标系句柄');
    return;
end

if nargin == 1
    tag = 'X';
    rot = 0;
elseif nargin == 2
    if isnumeric(tag) && isscalar(tag)
        rot = tag;
        tag = 'X';
    elseif ischar(tag) && (strncmpi(tag,'x',1) || strncmpi(tag,'y',1))
        rot = 0;
    else
        warning('输入参数类型错误');
        return;
    end
else
    if ~isnumeric(rot) || ~isscalar(rot)
        warning('输入参数类型错误');
    end
    if ~ischar(tag) || (~strncmpi(tag,'x',1) && ~strncmpi(tag,'y',1))
        warning('输入参数类型错误');
    end
end

oldxticklabel = findobj('type','text','tag','oldxticklabel');
oldyticklabel = findobj('type','text','tag','oldyticklabel');
if strncmpi(tag,'x',1)
    if isempty(oldxticklabel)
        str = get(ha,'XTickLabel');
        x = get(ha,'XTick');
        yl = ylim(ha);
        set(ha,'XTickLabel',[]);
        y = zeros(size(x)) + yl(1) - range(yl)/70;
        TextHandle = text(x,y,str,'rotation',rot,...
            'Interpreter','none','tag','oldxticklabel');
    else
        set(oldxticklabel,'rotation',rot);
        TextHandle = oldxticklabel;
    end
else
    if isempty(oldyticklabel)
        str = get(ha,'YTickLabel');
        y = get(ha,'YTick');
        xl = xlim(ha);
        set(ha,'YTickLabel',[]);
        x = zeros(size(y)) + xl(1) - range(xl)/10;
        TextHandle = text(x,y,str,'rotation',rot,...
            'Interpreter','none','tag','oldyticklabel');
    else
        set(oldyticklabel,'rotation',rot);
        TextHandle = oldyticklabel;
    end
end

rot = mod(rot,360);
if rot>=0 && rot<180
   set(TextHandle,'HorizontalAlignment','right');
else
   set(TextHandle,'HorizontalAlignment','left');
end```

>> Chapter19

类 LinearModel 的方法:

addTerms               compact                gather                 plotAdjustedResponse   plotPartialDependence  random                 
anova                  disp                   partialDependence      plotDiagnostics        plotResiduals          removeTerms            
coefCI                 dwtest                 plot                   plotEffects            plotSlice              step                   
coefTest               feval                  plotAdded              plotInteraction        predict                


类 LinearModel 的属性:

    Residuals
    Fitted
    Diagnostics
    MSE
    Robust
    RMSE
    Formula
    LogLikelihood
    DFE
    SSE
    SST
    SSR
    CoefficientCovariance
    CoefficientNames
    NumCoefficients
    NumEstimatedCoefficients
    Coefficients
    Rsquared
    ModelCriterion
    VariableInfo
    NumVariables
    VariableNames
    NumPredictors
    PredictorNames
    ResponseName
    NumObservations
    Steps
    ObservationInfo
    Variables
    ObservationNames


nlm = 


非线性回归模型:
    y ~ 0

系数:

类 NonLinearModel 的方法:

coefCI                 disp                   partialDependence      plotPartialDependence  plotSlice              random                 
coefTest               feval                  plotDiagnostics        plotResiduals          predict                


类 NonLinearModel 的属性:

    MSE
    Iterative
    Robust
    Residuals
    Fitted
    RMSE
    Diagnostics
    WeightedResiduals
    VariableInfo
    NumVariables
    VariableNames
    NumPredictors
    PredictorNames
    ResponseName
    NumObservations
    ObservationInfo
    Variables
    ObservationNames
    Formula
    LogLikelihood
    DFE
    SSE
    SST
    SSR
    CoefficientCovariance
    CoefficientNames
    NumCoefficients
    NumEstimatedCoefficients
    Coefficients
    Rsquared
    ModelCriterion


R =

    1.0000   -0.7095
   -0.7095    1.0000


mdl1 = 


线性回归模型:
    y ~ 1 + x1

估计系数:
                   Estimate      SE       tStat       pValue  
                   ________    ______    _______    __________

    (Intercept)     3115.4     223.06     13.967    2.0861e-14
    x1             -76.962     14.197    -5.4211    7.8739e-06


观测值数目: 31,误差自由度: 29
均方根误差: 383
R 方: 0.503,调整 R 方 0.486
F 统计量(常量模型): 29.4,p 值 = 7.87e-06

ynew =

   1.0e+03 *

    2.7306
    1.1913


mdl2 = 


线性回归模型:
    y ~ 1 + x1

估计系数:
                   Estimate      SE       tStat       pValue  
                   ________    ______    _______    __________

    (Intercept)     2983.8     121.29     24.601    4.8701e-19
    x1             -63.628     7.7043    -8.2587    1.3088e-08


观测值数目: 27,误差自由度: 25
均方根误差: 201
R 方: 0.732,调整 R 方 0.721
F 统计量(常量模型): 68.2,p 值 = 1.31e-08

mdl3 = 


线性回归模型(稳健拟合):
    y ~ 1 + x1

估计系数:
                   Estimate      SE      tStat       pValue  
                   ________    ______    ______    __________

    (Intercept)     3034.8     182.01    16.674    2.1276e-16
    x1               -68.3     11.584    -5.896    2.1194e-06


观测值数目: 31,误差自由度: 29
均方根误差: 313
R 方: 0.551,调整 R 方 0.535
F 统计量(常量模型): 35.5,p 值 = 1.78e-06

nlm1 = 


非线性回归模型(稳健拟合):
    y ~ beta1*exp(beta2/(x + beta3))

估计系数:
             Estimate       SE        tStat       pValue  
             ________    ________    _______    __________

    beta1      52.377      0.1449     361.46             0
    beta2    -0.25951    0.016175    -16.044    6.4817e-53
    beta3     0.76038    0.072948     10.423    1.7956e-24


观测值数目: 1281,误差自由度: 1278
均方根误差: 1.66
R 方: 0.747,调整 R 方 0.747
F 统计量(零模型): 4.64e+05,p 值 = 0

ci1 =

   52.0923   52.6609
   -0.2912   -0.2278
    0.6173    0.9035


nlm2 = 


非线性回归模型(稳健拟合):
    y ~ beta1*exp(beta2/(x + beta3))

估计系数:
             Estimate       SE        tStat       pValue  
             ________    ________    _______    __________

    beta1      52.369     0.12693      412.6             0
    beta2    -0.26243    0.014592    -17.984    5.9309e-64
    beta3     0.78167    0.067002     11.666    8.2311e-30


观测值数目: 1159,误差自由度: 1156
均方根误差: 1.37
R 方: 0.807,调整 R 方 0.807
F 统计量(零模型): 6.11e+05,p 值 = 0

R =

    1.0000   -0.3201   -0.0777   -0.8645   -0.5130   -0.4573
   -0.3201    1.0000   -0.1809    0.1845   -0.1092   -0.3757
   -0.0777   -0.1809    1.0000    0.1121    0.0520    0.1410
   -0.8645    0.1845    0.1121    1.0000    0.6132    0.4383
   -0.5130   -0.1092    0.0520    0.6132    1.0000    0.3303
   -0.4573   -0.3757    0.1410    0.4383    0.3303    1.0000


P =

    1.0000    0.1273    0.7181    0.0000    0.0104    0.0247
    0.1273    1.0000    0.3976    0.3882    0.6116    0.0704
    0.7181    0.3976    1.0000    0.6022    0.8095    0.5111
    0.0000    0.3882    0.6022    1.0000    0.0014    0.0322
    0.0104    0.6116    0.8095    0.0014    1.0000    0.1149
    0.0247    0.0704    0.5111    0.0322    0.1149    1.0000


mmdl1 = 


线性回归模型:
    y ~ 1 + x1 + x2 + x3 + x4 + x5

估计系数:
                   Estimate        SE        tStat        pValue  
                   _________    ________    ________    __________

    (Intercept)       121.17      17.406       6.961    1.6743e-06
    x1              -0.34712     0.14353     -2.4185      0.026406
    x2             -0.016719    0.087353    -0.19139       0.85036
    x3               -4.2903      1.0268     -4.1784    0.00056473
    x4             -0.039917    0.094237    -0.42357       0.67689
    x5              -0.15866    0.078847     -2.0122      0.059407


观测值数目: 24,误差自由度: 18
均方根误差: 2.8
R 方: 0.816,调整 R 方 0.765
F 统计量(常量模型): 16,p 值 = 4.46e-06

VIF =

    1.5974
    1.0657
    2.4044
    1.7686
    1.6985


mmdl2 = 


线性回归模型:
    y ~ 1 + x1 + x3 + x5

估计系数:
                   Estimate      SE        tStat       pValue  
                   ________    _______    _______    __________

    (Intercept)       119.5      11.81     10.118    7.4559e-09
    x1             -0.36229    0.11272    -3.2141     0.0048108
    x3              -4.0411    0.62858    -6.4289    4.7386e-06
    x5             -0.17739    0.05977    -2.9678     0.0082426


观测值数目: 22,误差自由度: 18
均方根误差: 2.11
R 方: 0.862,调整 R 方 0.84
F 统计量(常量模型): 37.6,p 值 = 5.81e-08

mmdl3 = 


线性回归模型:
    y ~ 1 + x1^2 + x1*x2 + x2^2 + x1*x3 + x2*x3 + x3^2 + x1*x4 + x2*x4 + x3*x4 + x4^2 + x1*x5 + x2*x5 + x3*x5 + x4*x5 + x5^2

估计系数:
                    Estimate        SE         tStat       pValue  
                   __________    _________    ________    _________

    (Intercept)        1804.1       176.67      10.211    0.0020018
    x1                -26.768       3.3174      -8.069    0.0039765
    x2                -16.422       1.4725     -11.153    0.0015449
    x3                -7.2417       17.328    -0.41792      0.70412
    x4                 1.7071       1.5284      1.1169      0.34543
    x5                -5.5878       1.2082     -4.6248     0.019034
    x1^2             0.034031      0.02233       1.524      0.22489
    x1:x2             0.18853     0.014842      12.702    0.0010526
    x2^2           -0.0024412    0.0030872    -0.79075      0.48684
    x1:x3             0.23808      0.21631      1.1006      0.35145
    x2:x3            -0.56157     0.087918     -6.3874    0.0077704
    x3^2              0.68822      0.63574      1.0826      0.35825
    x1:x4            0.016786     0.015763      1.0649      0.36502
    x2:x4           0.0030961    0.0058481     0.52942      0.63319
    x3:x4           -0.065623     0.071279    -0.92065      0.42513
    x4^2            -0.016381    0.0047701     -3.4342     0.041411
    x1:x5             0.03502     0.011535      3.0359     0.056047
    x2:x5            0.067888    0.0063552      10.682    0.0017537
    x3:x5             0.17506     0.063871      2.7408     0.071288
    x4:x5          -0.0016748    0.0056432    -0.29679      0.78599
    x5^2            -0.007748    0.0027112     -2.8577     0.064697


观测值数目: 24,误差自由度: 3
均方根误差: 0.557
R 方: 0.999,调整 R 方 0.991
F 统计量(常量模型): 123,p 值 = 0.00104
1。正在删除 x4:x5, FStat = 0.088084, pValue = 0.78599
2。正在删除 x2:x4, FStat = 0.49518, pValue = 0.52043
3。正在删除 x2^2, FStat = 0.55596, pValue = 0.48944
4。正在删除 x1:x3, FStat = 2.0233, pValue = 0.20475
5。正在删除 x3^2, FStat = 1.7938, pValue = 0.22232
6。正在删除 x3:x4, FStat = 1.7098, pValue = 0.22734

mmdl4 = 


线性回归模型:
    y ~ 1 + x1^2 + x1*x2 + x2*x3 + x1*x4 + x4^2 + x1*x5 + x2*x5 + x3*x5 + x5^2

估计系数:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________

    (Intercept)        1916.6       106.48     17.999    2.2957e-08
    x1                -29.485       1.6156    -18.251    2.0321e-08
    x2                -15.841      0.92505    -17.124     3.553e-08
    x3                 3.3267       4.4986     0.7395       0.47845
    x4                  0.757      0.43986      1.721       0.11936
    x5                 -6.547      0.69061    -9.4801    5.5705e-06
    x1^2             0.060353    0.0051667     11.681    9.6821e-07
    x1:x2             0.17622     0.010126     17.403    3.0846e-08
    x2:x3            -0.46789     0.050314    -9.2994    6.5277e-06
    x1:x4            0.034115    0.0041517     8.2173    1.7857e-05
    x4^2            -0.019258    0.0032306    -5.9612    0.00021239
    x1:x5            0.045394    0.0050247     9.0342    8.2768e-06
    x2:x5            0.063051    0.0043992     14.332    1.6742e-07
    x3:x5               0.165     0.025546     6.4588    0.00011693
    x5^2           -0.0052175    0.0016766    -3.1119       0.01248


观测值数目: 24,误差自由度: 9
均方根误差: 0.521
R 方: 0.997,调整 R 方 0.992
F 统计量(常量模型): 201,p 值 = 1.82e-09

mmdl5 = 


线性回归模型:
    y ~ 1 + x1^2 + x1*x2 + x2:x3 + x1:x4 + x4^2 + x1*x5 + x2*x5 + x3:x5 + x5^2

估计系数:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________

    (Intercept)        1809.1       94.501     19.143     8.544e-10
    x1                -27.514       1.3891    -19.808    5.9281e-10
    x2                -14.931      0.84624    -17.644    2.0412e-09
    x5                -5.9038      0.58088    -10.164    6.2848e-07
    x1^2             0.056747    0.0052153     10.881    3.1609e-07
    x1:x2              0.1671    0.0097032     17.221    2.6436e-09
    x2:x3            -0.46162     0.048949    -9.4306    1.3239e-06
    x1:x4            0.037604    0.0037157      10.12    6.5604e-07
    x4^2            -0.013934    0.0014402    -9.6755    1.0269e-06
    x1:x5            0.039071    0.0042784     9.1321    1.8171e-06
    x2:x5            0.059989    0.0041019     14.625    1.4875e-08
    x3:x5             0.18165     0.022175     8.1915    5.2127e-06
    x5^2           -0.0057969    0.0016226    -3.5726     0.0043753


观测值数目: 24,误差自由度: 11
均方根误差: 0.568
R 方: 0.995,调整 R 方 0.99
F 统计量(常量模型): 197,p 值 = 4.9e-11

mnlm = 


非线性回归模型:
    y ~ sqrt((x1 - b1)^2 + (x2 - b2)^2 + b3^2)/(60*b4) + b5

估计系数:
          Estimate       SE         tStat       pValue  
          ________    _________    _______    __________

    b1     2200.5       0.53366     4123.5    1.5922e-17
    b2     1399.9       0.48183     2905.4     9.168e-17
    b3     35.144        61.893    0.56782        0.5947
    b4     2.9994     0.0041439     723.82    9.5533e-14
    b5     6.9863       0.02087     334.75     4.515e-12


观测值数目: 10,误差自由度: 5
均方根误差: 0.00591
R 方: 1,调整 R 方 1
F 统计量(常量模型): 8.3e+05,p 值 = 9.75e-15
>> ```

你可能感兴趣的:(数据可视化,可视化,MATLAB可视化,MATLAB,GUI,matlab)