【GAN】原始gan论文的pytorch代码实现

写在前面:
1.代码来源:https://github.com/YadiraF/GAN
2.本文目的:简要记录gan论文的pytorch代码。
个人理解,若有不足,欢迎指教。2022.10.31写

目录

  • 一、导入相关库
  • 二、参数设置
  • 三、网络架构
    • 1.生成器
    • 2.判别器
  • 四、初始化
  • 五、训练模型
    • 1.训练
    • 2.保存模型(state_dict)
    • 3.加载模型
  • 总结


一、导入相关库

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader 
from torchvision import datasets 
from torch.autograd import Variable

import torch.nn as nn
# import torch.nn.functional as F
import torch

二、参数设置

os.makedirs("images", exist_ok=True) # 用来保存等下生成的假图片。

parser = argparse.ArgumentParser() # 一些参数
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size) # 图片大小 eg.3*32*32
cuda = True if torch.cuda.is_available() else False # 是否使用GPU

三、网络架构

1.生成器

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh() # 输出:(bath_size,channels,img_size,img_size)
        )
    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape) # (bath_size,channels*img_size*img_size)
        return img

torch.nn.module用法:
【GAN】原始gan论文的pytorch代码实现_第1张图片
【GAN】原始gan论文的pytorch代码实现_第2张图片
关于torch.var函数
【GAN】原始gan论文的pytorch代码实现_第3张图片

2.判别器

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True), # inplace参数:可选地就地执行操作。默认为False
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(), # 输出为1维分数。
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity

【GAN】原始gan论文的pytorch代码实现_第4张图片

四、初始化

损失函数、生成器和判别器、数据集、优化器的初始化

# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

五、训练模型

1.训练

for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):

        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(Tensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise as generator input
        z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))

        # Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Measure discriminator's ability to classify real from generated samples
        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

2.保存模型(state_dict)

只需要保存模型训练好的参数

## 保存模型
torch.save(generator.state_dict(), './save/gan/generator.pth')
torch.save(discriminator.state_dict(), './save/gan/discriminator.pth')

3.加载模型

generator = Generator()
discriminator = Discriminator()
generator.load_state_dict(torch.load('./save/gan/discriminator.pth'))
discriminator.eval()

这里保存和参加载模型可以参考:
PyTorch模型保存与加载

六、训练结果(未测试)
因为只有cpu,训练时间较长,所以我暂停程序在130epoch,对298张图片做了一个gif显示。

可见到后面白噪声变少了,但是数字1变多了。这暴露乐gan的一个缺点,宁愿生成重复的简单图片,也不愿意生成新的复杂的图片。

总结

ending!好像啥也没说哈哈哈,仅个人记录。

你可能感兴趣的:(python,Pytorch,pytorch,生成对抗网络,深度学习)