需要用到的库:requests、lxml、os、threading、queue
多线程爬虫可比单线程爬虫爬取速度多了好几倍,单线程就好比是一辆车来回运输货物,而多线程则是多辆车同时运输货物。效率自然可不一样
该代码还能把数据存储到电脑桌面(明天添加)
使用了线程池来高效爬取
import requests
from lxml import etree
import os
import threading
from queue import Queue
b = 0
anquanquurls = Queue(100)
anquanqunames = Queue(100)
yeshu=int(input('请输入你要爬取的页数:'))
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36',
'Referer':'https://www.doutula.com/',
}
def geturl():
global yeshu,names,headers
for i in range(yeshu):
urll = 'https://www.pkdoutu.com/article/list/?page={}'.format(i+1)
print('正在获取第{}页所有url'.format(i+1))
response = requests.get(urll,headers=headers)
content = response.content.decode('utf8')
html=etree.HTML(content)
urlss = html.xpath('//div/div/img/@data-backup')
names = html.xpath('//div[@class="random_article"]/div/img/@alt')
for url in urlss:
anquanquurls.put(url)
for name in names:
anquanqunames.put(name)
def xiazai():
global names,b,headers
while 1:
url = anquanquurls.get()
name = anquanqunames.get()
if len(name)==0:
hou = os.path.splitext(url)[1]
response = requests.get(url,headers=headers)
content = response.content
path = "{}{}".format(b,hou)
with open(path,mode='wb')as f:
f.write(content)
print('{}{} 已爬取'.format(b,hou))
b+=1
else:
hou = os.path.splitext(url)[1]
response = requests.get(url,headers=headers)
content = response.content
path = "{}{}".format(name,hou)
with open(path,mode='wb')as f:
f.write(content)
print('{}{} 已爬取'.format(name,hou))
def duoxiancheng():
global names,b,headers
t = threading.Thread(target=geturl)
t.start()
for i in range(5):
t = threading.Thread(target=xiazai)
t.start()
duoxiancheng()