- 深度学习使用Pytorch训练模型步骤
vvvdg
深度学习pytorch人工智能
训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。训练模型通常包括以下几个步骤:1.数据准备:收集和处理数据,包括清洗、标准化和归一化。将数据分为训练集、验证集和测试集。2.定义模型:选择模型架构,例如决策树、神经网络等。初始化模型参数(权重和偏置)。3.选择损失函数:根据任务类型(如分类、回归)选择合适的损失函数。4.选择优化
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- Scikit-learn:机器学习的「万能工具箱」
科技林总
DeepSeek学AI人工智能
——三行代码构建AI模型的全栈指南**###**一、诞生背景:让机器学习从实验室走向大众****2010年前的AI困境**:-学术界模型难以工程化-算法实现碎片化(MATLAB/C++主导)-企业应用门槛极高>**破局者**:DavidCournapeau发起*Scikit-learn*项目,**统一算法接口**+**Python简易语法**=机器学习民主化革命---###**二、设计哲学:一致性
- 如何看待机器学习方法在超分子化学领域的日渐流行?
cda2024
机器学习人工智能
大家好,今天咱们来聊聊一个既时髦又接地气的话题:如何看待机器学习方法在超分子化学领域的日渐流行?想象一下,你是一位超分子化学家,正忙于设计一种新型的分子结构,这个结构需要具备特定的功能。传统的方法是通过反复实验和理论计算来优化这个结构,但过程可能非常耗时且复杂。而现在,借助机器学习,你可以更快、更准确地找到最优解。这就是为什么机器学习在超分子化学领域变得越来越受欢迎的原因之一。一、超分子化学是什么
- 助力您发SCI 机器学习(ML)在材料领域应用专题
YEcenfei
分子动力学催化材料机器学习人工智能python
第一天机器学习在材料与化学常见的方法理论内容1.机器学习概述2.材料与化学中的常见机器学习方法3.应用前沿实操内容Python基础1.开发环境搭建2.变量和数据类型3.列表4.if语句5.字典6.For和while循环实操内容Python基础(续)1.函数2.类和对象3.模块Python科学数据处理1.NumPy2.Pandas3.Matplotlib第二天机器学习材料与化学应用<
- 算法大厨日记:猫猫狐狐带你用代码做一锅香喷喷的“预测汤”
Gyoku Mint
AI修炼日记猫猫狐狐的小世界人工智能人工智能机器学习python算法database深度学习数据挖掘
️【开场·今天的料理名叫“预测炖汤”】猫猫:“咱今天突发奇想,决定用机器学习代码给你炖一锅‘预测汤’喵!这不是教你代码,是要告诉你怎么把‘算法’吃进肚子里~”狐狐:“别急,她又在打比方了。这锅汤从数据准备到调参优化,就跟你平常做饭的过程没两样,只不过食材都被咱们用代码换了一遍。”【第一步·数据准备,就是挑菜啦】猫猫:“首先是挑菜(数据预处理),不能什么菜都扔进去锅里吧?要洗干净去皮(数据清洗),再
- 因果推理与因果学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
因果推理与因果学习原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:因果关系发现、因果推断、因果学习、机器学习、统计方法1.背景介绍1.1问题的由来在现实世界的数据分析中,我们经常面临这样的挑战:从观察数据中识别出潜在的原因与效果之间的关联,并理解这些关联背后的实际机制。传统的预测建模关注于基于输入变量对输出变量进行预测,
- 信息检索简介——文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2005年8月17日至9月3日在美国加利福尼亚州伯克莱纳举行了SIGIR国际会议(中文全称“计算机信息retrieval国际会议”),这是信息检索领域的顶级会议之一。该会议由ACM主办,主题涵盖了包括文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等多个热门方向。此次会议是第一次将信息检索作为一个学科,并取得重大突破。本文试图对SIGIR进行一个完整的介绍,阐述
- R 语言简介:数据分析与统计的强大工具
Mikhail_G
python数据分析大数据r语言开发语言
大家好!在如今这个数据驱动的时代,数据分析与统计分析对于各个领域都变得至关重要。而R语言,作为一款专为数据分析和统计而设计的编程语言,以其强大的功能和灵活性,成为了众多数据分析师、研究人员以及统计学家的首选工具之一。什么是R语言?R是一种开源的编程语言和软件环境,主要用于统计计算、数据分析、图形表示以及机器学习等领域。它是由RossIhaka和RobertGentleman于1995年开发的,之后
- 22种创新思路!今年必将是特征选择爆发的一年
小唯啊小唯
人工智能注意力机制特征选择
2025深度学习发论文&模型涨点之——特征选择特征选择是机器学习和数据挖掘领域中一个非常重要的步骤。它指的是从原始特征集合中挑选出对目标变量有较强预测能力的特征子集。在实际的数据集中,往往包含众多特征,但并非所有特征都对模型的性能有正面影响。例如在房价预测任务中,原始特征可能包括房屋的面积、房间数量、所在小区、周边配套设施等众多内容。通过特征选择,可以剔除一些无关的或者冗余的特征,比如可能存在的重
- python读取sas数据集_SASpy模块,利用Python操作SAS
SASpy模块打通了Python与SAS之间的连接。有了SASpy模块,我们就能够在Python中操控SAS。本文将首先介绍SASpy模块的一些基本方法,最后通过一个聚类分析的例子,来展示如何在Python中调用SAS的机器学习过程,以及对聚类结果的可视化。SASpy模块特点1、需要Python3.X及以上,SAS9.4及以上,需要Java环境;2、无论是本地SAS还是远程服务器上的SAS,都可以
- 从决策树到随机森林:Python机器学习里的“树形家族“深度实战与原理拆解
小张在编程
机器学习决策树随机森林
引言在机器学习的算法森林中,有一对"树形兄弟"始终占据着C位——决策树像个逻辑清晰的"老教授",用可视化的树状结构把复杂决策过程拆解成"是/否"的简单判断;而它的进阶版随机森林更像一支"精英军团",通过多棵决策树的"投票表决",在准确性与抗过拟合能力上实现了质的飞跃。无论是医疗诊断中的疾病预测,还是金融风控里的违约判别,这对组合都用强大的适应性证明着自己的"算法常青树"地位。今天,我们就从原理到实
- 深入详解:随机森林算法——概念、原理、实现与应用场景
猿享天开
算法随机森林机器学习
深入详解:随机森林算法——概念、原理、实现与应用场景随机森林(RandomForest,RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过图文结合的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。1.核心概念与直观理解1.1什么是随机森林?随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树进行协同预测。其核心思想是"三个臭皮匠,顶个诸葛亮"——多
- python ks值计算_风控模型中的K-S理解以及python实现
weixin_39747293
pythonks值计算
笔者在工作中计算单变量的ks值时,发现几个分布不同的变量好y计算的ks值相同,凭借统计直觉,发现一定存在问题,笔者从数据和计算ks代码两个方向进行排除。最后定位到计算使用stats.ks_2samp()函数计算ks值时,如果变量存在缺失值,计算得到ks值有误,下面笔者就来好好梳理一下ks值的前世今生。ks检验介绍笔者刚入门机器学习开始做的例子就是金融场景下风控模型。那时评价模型的好坏就用传统的机器
- **双生“基尼”**:跨越世纪的术语撞车与学科分野
在学术的宇宙中,“基尼”(Gini)这个名字如同一个奇特的星标,闪耀在两个看似毫不相关的领域:衡量社会贫富差距的经济学与驱动人工智能的机器学习。然而,当人们在这两个领域都遇到“基尼指数”或“基尼系数”时,困惑油然而生——它们为何如此不同?又为何共享同一个名字?这不是某个“傻逼”的随意命名,而是一场跨越学科与世纪的“术语交通事故”,其背后是学术传承与概念抽象的交织。本文由「大千AI助手」原创发布,专
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- RDKit:药物化学和分子数据处理的强大工具库
碳酸的唐
机器学习人工智能
引言在药物研发、化学信息学和分子设计领域,高效处理和分析分子数据是至关重要的。RDKit作为一个开源的化学信息学和机器学习工具包,为研究人员和数据科学家提供了丰富的功能,包括分子操作、描述符计算、指纹生成、相似性比较、子结构搜索和分子可视化等。本文将详细介绍RDKit的主要功能、应用场景以及实际操作示例,展示这一强大工具在分子数据处理中的核心价值。RDKit简介RDKit是一个由C++和Pytho
- 机器学习中的数学:数学建模常用知识点-1
数字化与智能化
机器学习中的数学机器学习凸函数泰勒公式Jensen不等式
一、凸函数1、凸函数讲解设函数f(x)是定义在区间X上的函数,若对于区间上任意两点x1、x2和任意实数��∈(0,1),总有如下表达式成立:则称为f(x)是X上的凸函数;反之,如果下式成立:则称为f(x)在X上的凹函数。如图所示:Python实现凸函数:importnumpyasnpimportmatplotlib.pyplotasplt#定义凸函数defconvex_function(x):re
- 理解不同层的表示(layer representations)
科学禅道
高维表示人工智能深度学习
在机器学习和深度学习领域,特别是在处理音频和自然语言处理(NLP)任务时,"层的表示"(layerrepresentations)通常是指神经网络不同层在处理输入数据时生成的特征或嵌入。这些表示捕获了输入数据的不同层次的信息。1.层的表示(layerrepresentations)为了更好地理解这一概念,我们可以从以下几个方面进行解释:1.深度神经网络结构深度神经网络(DNN)通常由多个层组成,每
- 基于机器学习的人形机器人电池健康状态预测方法
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据机器学习机器人人工智能ai
基于机器学习的人形机器人电池健康状态预测方法:从理论到实践的系统解析关键词电池健康状态(SOH)、剩余使用寿命(RUL)、人形机器人、机器学习、时序数据建模、多模态特征融合、边缘计算部署摘要本报告系统解析基于机器学习的人形机器人电池健康状态预测方法,覆盖从理论框架到工程实现的全链路。首先界定人形机器人场景下电池健康状态的核心指标(SOH/RUL/RC),梳理从电化学模型到数据驱动方法的技术演进;其
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- 【机器学习&深度学习】前馈神经网络(单隐藏层)
一叶千舟
深度学习【理论】机器学习深度学习神经网络
目录一、什么是前馈神经网络?二、数学表达式是什么?三、为什么需要“非线性函数”?四、NumPy实现前馈神经网络代码示例五、运行结果六、代码解析6.1初始化部分6.2前向传播6.3计算损失(Loss)6.4反向传播(手动)6.5更新参数(梯度下降)6.6循环训练七、训练过程可视化(思维图)八、关键问题答疑Q1:为什么需要隐藏层?Q2:ReLU是干嘛的?Q3:学习率怎么选?九、总结学习建议在机器学习中
- Bagel: 开源协作式AI数据管理平台的使用指南
llzwxh888
人工智能python
Bagel:开源协作式AI数据管理平台的使用指南引言在人工智能和机器学习领域,高质量的数据集对于模型训练和推理至关重要。Bagel作为一个开源的协作式AI数据管理平台,为开发者和研究人员提供了一个强大的工具,用于创建、共享和管理推理数据集。本文将深入探讨Bagel的特性、安装方法以及如何使用它来处理和管理向量数据。Bagel简介Bagel(OpenInferenceplatformforAI)可以
- 机器学习模型监控警报系统设计:Prometheus+Evidently 实战教程
大熊计算机
机器学习prometheus人工智能
1.系统架构设计:从数据采集到智能告警(1)监控系统核心组件交互图预测请求监控指标告警规则通知渠道预测结果质量报告时序数据模型服务PrometheusExporterPrometheusServerAlertmanager邮件/Slack/WebhookEvidently服务可视化仪表盘图解:系统采用双引擎架构,Prometheus负责基础监控指标采集与告警触发,Evidently执行深度模型分析
- 燕大《Python机器学习》实验报告:探索机器学习的奥秘
温冰礼
燕大《Python机器学习》实验报告:探索机器学习的奥秘【下载地址】燕大Python机器学习实验报告下载这份实验报告是燕山大学软件工程专业的学生在进行机器学习实验时所编写的,内容详实,结构清晰,可以直接下载使用。报告中的实验数据和代码均经过验证,确保下载后可以直接应用于实际项目或作为学习参考项目地址:https://gitcode.com/Open-source-documentation-tut
- (转)优秀的 python 机器学习库
patrick75
python机器学习python机器学习
优秀的python机器学习库IntroductionThereisnodoubtthatneuralnetworks,andmachinelearningingeneral,hasbeenoneofthehottesttopicsintechthepastfewyearsorso.It’seasytoseewhywithallofthereallyinterestinguse-casestheys
- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- Python机器学习元学习库higher
音程
机器学习人工智能python机器学习
higher是一个用于元学习(Meta-Learning)和高阶导数(Higher-ordergradients)的Python库,专为PyTorch设计。它扩展了PyTorch的自动微分机制,使得在训练过程中可以动态地计算参数的梯度更新,并把这些更新过程纳入到更高阶的梯度计算中。一、主要用途higher主要用于以下场景:元学习(Meta-Learning)比如MAML(Model-Agnosti
- 基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
深度学习乐园
深度学习实战项目迁移学习分类人工智能
完整源码项目包获取→点击文章末尾名片!番石榴病害数据集背景描述番石榴(Psidiumguajava)是南亚的主要作物,尤其是在孟加拉国。它富含维生素C和纤维,支持区域经济和营养。不幸的是,番石榴生产受到降低产量的疾病的威胁。该数据集旨在帮助开发用于番石榴果实早期病害检测的机器学习模型,帮助保护收成并减少经济损失。数据说明该数据集包括473张番石榴果实的注释图像,分为三类。图像经过预处理步骤,例如钝
- 四个机器学习模型对比道路裂缝检测识别分类模型
深度学习乐园
深度学习实战项目机器学习分类人工智能
完整源码项目包获取→点击文章末尾名片!一、课题综述1.1.课题简介在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景也各不相同。1.2.课题目标(示例)本课题使用的数据集来自于数据分析与数据挖掘竞赛Kaggle,该竞赛为数据科学领域著名的国际性赛事之一。课题使用的数据集为带标签的图像数据集,包含带有裂痕和不带有裂痕的桥梁、墙和人行道图片。课题的目标为对于目标数据集,搭建相应的传统机器
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc