spssχ2检验_SPSS详细操作:一致性检验和配对卡方检验

一、问题与数据

有两种方法可用于诊断某种癌症,A方法简单易行,成本低,患者更容易接受,B方法结果可靠,但操作繁琐,患者配合困难。某研究选择了53例待诊断的门诊患者,每个患者分别用A和B两种方法进行诊断(表1),判断两种方法诊断癌症有无差别,A方法是否可以代替B方法。

表1 进口药和国产药治疗效果

二、对数据结构的分析

之前介绍过成组设计的列联表,它的行变量和列变量代表的是一个事物的两个不同属性,以我们举过的A药和B药治疗急性心肌梗死患者疗效比较为例,例子中行变量“药物”和列变量“转归”是患者的两个不同特征。

但是配对设计的列联表却有些不同,它的行变量和列变量代表的是一个事物的同一属性,只是对这个属性的判断方法不同而已。如表1所示,行和列均指的是患者是否患有癌症,所不同的是一个是A方法,另一个是B方法。这种列联表最大的特点是行和列数目永远都是一样的。此时,再用成组计数资料的χ2检验就不合适了。这里我们就要用到Kappa一致性检验和配对χ2检验(McNemar检验)。

为什么同一配对设计计数资料咋还有两种检验方法呢?其实这两种方法各有侧重:

1、Kappa检验旨在评价两种方法是否存在一致性;配对χ2检验主要确定两种方法诊断结果是否有差别;

2、Kappa检验会利用列联表的全部数据,而配对χ2检验只利用“不一致“数据,如表1中b和c;

3、Kappa检验可计算Kappa值用于评价一致性大小,而配对χ2检验只能给出两种方法差别是否具有统计学意义的判断。

Kappa值判断标准:

Kappa≥0.75,说明两种方法诊断结果一致性较好;

0.4≤Kappa<0.75,说明两种方法诊断结果一致性一般;

Kappa<0.4,说明两种方法诊断结果一致性较差。

有关具体计算过程,我们这里可以交给计算机统计软件SPSS来完成。

三、SPSS分析方法

1. 数据录入

(1) 变量视图

(2) 数据视图

2. 加权个案:选择Data→weight cases→勾选Weight cases by,将频数放入Frequency Variable→OK。

3. 选择Analyze→Descriptive Statistics→Crosstabs

4. 选项设置

(1) 主对话框设置:将“A方法”和“B方法”两个变量分别放入Row(s)框和Column(s)框中(无位置要求)。

(2) Statistics设置:勾选McNemar和Kappa→Continue

(3) Cells设置:Counts中勾选Observed,输出实际观测频数;Percentages勾选Row和Column,输出行和列占比→Continue→OK

四、结果解读

表1 统计描述

表2 配对χ2检验

表3 Kappa一致性检验

表2中SPSS给出了McNemer检验的结果, P=0.022<0.05,提示两种方法诊断情况并不一致;表3中Kappa=0.506,P<0.001,提示两种方法诊断结果存在一致性,但是Kappa在0.4~0.75范围内,一致性一般。

五、撰写结论

A方法和B方法诊断结果一致性一般(Kappa=0.506,P<0.001); B诊断阳性率为67.9%,明显高于A诊断(50.9%),且差别具有统计学意义(P=0.022)。

PS: R*C配对列联表的χ2检验应用Bowker检验,SPSS的具体操作方法同McNemar检验。

(更多内容可关注“医咖会”微信公众号:传播医学知识和研究进展,探讨临床研究方法学。)

你可能感兴趣的:(spssχ2检验)