Author :Horizon Max
✨ 编程技巧篇:各种操作小结
机器视觉篇:会变魔术 OpenCV
深度学习篇:简单入门 PyTorch
神经网络篇:经典网络模型
算法篇:再忙也别忘了 LeetCode
视频链接:Lecture 11 Advanced_CNN
文档资料:
//Here is the link:
课件链接:https://pan.baidu.com/s/1vZ27gKp8Pl-qICn_p2PaSw
提取码:cxe4
GoogLeNet是google推出的基于 Inception Module 的深度神经网络模型,在2014年的ImageNet竞赛中夺得了冠军 :
其 基本组成结构 有四个成分:1 * 1卷积,3 * 3卷积,5 * 5卷积,3 * 3最大池化。最后对四个成分运算结果进行通道上组合 ;
这是它的核心思想,通过多个卷积核 提取图像不同尺度的信息 ,最后进行融合,可以得到图像更好的表征 。
这里出现了 1 X 1 的卷积核 ,通过下图应该就知道它的作用是什么了:
上面的直接采用 5 X 5 卷积 ,下面的在 5 X 5 卷积 之前先使用了 1 X 1 卷积,它们之间 计算量 却相差了 10倍 !
随着数据量的增加,模型深度的加深,就会出现 维度诅咒 的问题,即 计算量呈指数趋势增长 !
这样做可以有效地避免复杂的参数和计算量 !
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# 1 prepare dataset
batch_size = 64
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=False)
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor(),
download=False)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# 2 design model using class
class InceptionA(nn.Module): # 构建 Inception Module
def __init__(self, in_channels):
super(InceptionA, self).__init__()
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_1_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
self.branch3x3db1_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3db1_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3db1_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_1_2(branch5x5)
branch3x3db1 = self.branch3x3db1_1(x)
branch3x3db1 = self.branch3x3db1_2(branch3x3db1)
branch3x3db1 = self.branch3x3db1_3(branch3x3db1)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3db1, branch_pool]
return torch.cat(outputs, 1)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
self.incept1 = InceptionA(in_channels=10)
self.incept2 = InceptionA(in_channels=20)
self.mp = nn.MaxPool2d(2)
self.fc = nn.Linear(1408, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
x = self.incept1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.incept2(x)
x = x.view(in_size, -1) # flatten the tensor
x = self.fc(x)
return F.log_softmax(x)
model = Net()
model.cuda()
# 3 construct loss and optimizer
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 4 training cycle
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data).cuda(), Variable(target).cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch:{}[{}/{} ({:.0f}%)]\t Loss:{:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data, volatile=True).cuda(), Variable(target).cuda()
output = model(data)
# sun up batch loss
test_loss += F.nll_loss(output, target, size_average=False).data[0]
# get the index of the max log-probability
pred = torch.max(output.data, 1)[1].cuda()
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
print('\n Test set: Average loss:{:.4f},Accuracy:{}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
if __name__ == '__main__':
epoch_list = []
acc_list = []
for epoch in range(10):
train(epoch)
acc = test()
epoch_list.append(epoch)
acc_list.append(acc)
plt.plot(epoch_list, acc_list)
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.show()
PyTorch 官方文档: PyTorch Documentation
PyTorch 中文手册: PyTorch Handbook
《PyTorch深度学习实践》系列链接:
Lecture01 Overview
Lecture02 Linear_Model
Lecture03 Gradient_Descent
Lecture04 Back_Propagation
Lecture05 Linear_Regression_with_PyTorch
Lecture06 Logistic_Regression
Lecture07 Multiple_Dimension_Input
Lecture08 Dataset_and_Dataloader
Lecture09 Softmax_Classifier
Lecture10 Basic_CNN
Lecture11 Advanced_CNN
Lecture12 Basic_RNN
Lecture13 RNN_Classifier