import logging
import random
import numpy as np
import torch
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')
# set seed
seed = 666
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
# set cuda
gpu = 0
use_cuda = gpu >= 0 and torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(gpu)
device = torch.device("cuda", gpu)
else:
device = torch.device("cpu")
logging.info("Use cuda: %s, gpu id: %d.", use_cuda, gpu)
2020-07-17 12:02:34,773 INFO: Use cuda: True, gpu id: 0.
# split data to 10 fold
fold_num = 10
data_file = '../data/train_set.csv'
import pandas as pd
def all_data2fold(fold_num, num=10000):
fold_data = []
f = pd.read_csv(data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()[:num]
labels = f['label'].tolist()[:num]
total = len(labels)
index = list(range(total))
np.random.shuffle(index)
all_texts = []
all_labels = []
for i in index:
all_texts.append(texts[i])
all_labels.append(labels[i])
label2id = {}
for i in range(total):
label = str(all_labels[i])
if label not in label2id:
label2id[label] = [i]
else:
label2id[label].append(i)
all_index = [[] for _ in range(fold_num)]
for label, data in label2id.items():
# print(label, len(data))
batch_size = int(len(data) / fold_num)
other = len(data) - batch_size * fold_num
for i in range(fold_num):
cur_batch_size = batch_size + 1 if i < other else batch_size
# print(cur_batch_size)
batch_data = [data[i * batch_size + b] for b in range(cur_batch_size)]
all_index[i].extend(batch_data)
batch_size = int(total / fold_num)
other_texts = []
other_labels = []
other_num = 0
start = 0
for fold in range(fold_num):
num = len(all_index[fold])
texts = [all_texts[i] for i in all_index[fold]]
labels = [all_labels[i] for i in all_index[fold]]
if num > batch_size:
fold_texts = texts[:batch_size]
other_texts.extend(texts[batch_size:])
fold_labels = labels[:batch_size]
other_labels.extend(labels[batch_size:])
other_num += num - batch_size
elif num < batch_size:
end = start + batch_size - num
fold_texts = texts + other_texts[start: end]
fold_labels = labels + other_labels[start: end]
start = end
else:
fold_texts = texts
fold_labels = labels
assert batch_size == len(fold_labels)
# shuffle
index = list(range(batch_size))
np.random.shuffle(index)
shuffle_fold_texts = []
shuffle_fold_labels = []
for i in index:
shuffle_fold_texts.append(fold_texts[i])
shuffle_fold_labels.append(fold_labels[i])
data = {'label': shuffle_fold_labels, 'text': shuffle_fold_texts}
fold_data.append(data)
logging.info("Fold lens %s", str([len(data['label']) for data in fold_data]))
return fold_data
fold_data = all_data2fold(10)
2020-07-17 12:02:39,180 INFO: Fold lens [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000]
# build train, dev, test data
fold_id = 9
# dev
dev_data = fold_data[fold_id]
# train
train_texts = []
train_labels = []
for i in range(0, fold_id):
data = fold_data[i]
train_texts.extend(data['text'])
train_labels.extend(data['label'])
train_data = {'label': train_labels, 'text': train_texts}
# test
test_data_file = '../data/test_a.csv'
f = pd.read_csv(test_data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()
test_data = {'label': [0] * len(texts), 'text': texts}
# build vocab
from collections import Counter
from transformers import BasicTokenizer
basic_tokenizer = BasicTokenizer()
class Vocab():
def __init__(self, train_data):
self.min_count = 5
self.pad = 0
self.unk = 1
self._id2word = ['[PAD]', '[UNK]']
self._id2extword = ['[PAD]', '[UNK]']
self._id2label = []
self.target_names = []
self.build_vocab(train_data)
reverse = lambda x: dict(zip(x, range(len(x))))
self._word2id = reverse(self._id2word)
self._label2id = reverse(self._id2label)
logging.info("Build vocab: words %d, labels %d." % (self.word_size, self.label_size))
def build_vocab(self, data):
self.word_counter = Counter()
for text in data['text']:
words = text.split()
for word in words:
self.word_counter[word] += 1
for word, count in self.word_counter.most_common():
if count >= self.min_count:
self._id2word.append(word)
label2name = {0: '科技', 1: '股票', 2: '体育', 3: '娱乐', 4: '时政', 5: '社会', 6: '教育', 7: '财经',
8: '家居', 9: '游戏', 10: '房产', 11: '时尚', 12: '彩票', 13: '星座'}
self.label_counter = Counter(data['label'])
for label in range(len(self.label_counter)):
count = self.label_counter[label]
self._id2label.append(label)
self.target_names.append(label2name[label])
def load_pretrained_embs(self, embfile):
with open(embfile, encoding='utf-8') as f:
lines = f.readlines()
items = lines[0].split()
word_count, embedding_dim = int(items[0]), int(items[1])
index = len(self._id2extword)
embeddings = np.zeros((word_count + index, embedding_dim))
for line in lines[1:]:
values = line.split()
self._id2extword.append(values[0])
vector = np.array(values[1:], dtype='float64')
embeddings[self.unk] += vector
embeddings[index] = vector
index += 1
embeddings[self.unk] = embeddings[self.unk] / word_count
embeddings = embeddings / np.std(embeddings)
reverse = lambda x: dict(zip(x, range(len(x))))
self._extword2id = reverse(self._id2extword)
assert len(set(self._id2extword)) == len(self._id2extword)
return embeddings
def word2id(self, xs):
if isinstance(xs, list):
return [self._word2id.get(x, self.unk) for x in xs]
return self._word2id.get(xs, self.unk)
def extword2id(self, xs):
if isinstance(xs, list):
return [self._extword2id.get(x, self.unk) for x in xs]
return self._extword2id.get(xs, self.unk)
def label2id(self, xs):
if isinstance(xs, list):
return [self._label2id.get(x, self.unk) for x in xs]
return self._label2id.get(xs, self.unk)
@property
def word_size(self):
return len(self._id2word)
@property
def extword_size(self):
return len(self._id2extword)
@property
def label_size(self):
return len(self._id2label)
vocab = Vocab(train_data)
2020-07-17 12:02:40,225 INFO: PyTorch version 1.2.0 available.
2020-07-17 12:02:43,280 INFO: Build vocab: words 4337, labels 14.
# build module
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, hidden_size):
super(Attention, self).__init__()
self.weight = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.weight.data.normal_(mean=0.0, std=0.05)
self.bias = nn.Parameter(torch.Tensor(hidden_size))
b = np.zeros(hidden_size, dtype=np.float32)
self.bias.data.copy_(torch.from_numpy(b))
self.query = nn.Parameter(torch.Tensor(hidden_size))
self.query.data.normal_(mean=0.0, std=0.05)
def forward(self, batch_hidden, batch_masks):
# batch_hidden: b x len x hidden_size (2 * hidden_size of lstm)
# batch_masks: b x len
# linear
key = torch.matmul(batch_hidden, self.weight) + self.bias # b x len x hidden
# compute attention
outputs = torch.matmul(key, self.query) # b x len
masked_outputs = outputs.masked_fill((1 - batch_masks).bool(), float(-1e32))
attn_scores = F.softmax(masked_outputs, dim=1) # b x len
# 对于全零向量,-1e32的结果为 1/len, -inf为nan, 额外补0
masked_attn_scores = attn_scores.masked_fill((1 - batch_masks).bool(), 0.0)
# sum weighted sources
batch_outputs = torch.bmm(masked_attn_scores.unsqueeze(1), key).squeeze(1) # b x hidden
return batch_outputs, attn_scores
# build word encoder
bert_path = '../emb/bert-mini/'
dropout = 0.15
from transformers import BertModel
class WordBertEncoder(nn.Module):
def __init__(self):
super(WordBertEncoder, self).__init__()
self.dropout = nn.Dropout(dropout)
self.tokenizer = WhitespaceTokenizer()
self.bert = BertModel.from_pretrained(bert_path)
self.pooled = False
logging.info('Build Bert encoder with pooled {}.'.format(self.pooled))
def encode(self, tokens):
tokens = self.tokenizer.tokenize(tokens)
return tokens
def get_bert_parameters(self):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_parameters = [
{'params': [p for n, p in self.bert.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in self.bert.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
return optimizer_parameters
def forward(self, input_ids, token_type_ids):
# input_ids: sen_num x bert_len
# token_type_ids: sen_num x bert_len
# sen_num x bert_len x 256, sen_num x 256
sequence_output, pooled_output = self.bert(input_ids=input_ids, token_type_ids=token_type_ids)
if self.pooled:
reps = pooled_output
else:
reps = sequence_output[:, 0, :] # sen_num x 256
if self.training:
reps = self.dropout(reps)
return reps
class WhitespaceTokenizer():
"""WhitespaceTokenizer with vocab."""
def __init__(self):
vocab_file = bert_path + 'vocab.txt'
self._token2id = self.load_vocab(vocab_file)
self._id2token = {v: k for k, v in self._token2id.items()}
self.max_len = 256
self.unk = 1
logging.info("Build Bert vocab with size %d." % (self.vocab_size))
def load_vocab(self, vocab_file):
f = open(vocab_file, 'r')
lines = f.readlines()
lines = list(map(lambda x: x.strip(), lines))
vocab = dict(zip(lines, range(len(lines))))
return vocab
def tokenize(self, tokens):
assert len(tokens) <= self.max_len - 2
tokens = ["[CLS]"] + tokens + ["[SEP]"]
output_tokens = self.token2id(tokens)
return output_tokens
def token2id(self, xs):
if isinstance(xs, list):
return [self._token2id.get(x, self.unk) for x in xs]
return self._token2id.get(xs, self.unk)
@property
def vocab_size(self):
return len(self._id2token)
# build sent encoder
sent_hidden_size = 256
sent_num_layers = 2
class SentEncoder(nn.Module):
def __init__(self, sent_rep_size):
super(SentEncoder, self).__init__()
self.dropout = nn.Dropout(dropout)
self.sent_lstm = nn.LSTM(
input_size=sent_rep_size,
hidden_size=sent_hidden_size,
num_layers=sent_num_layers,
batch_first=True,
bidirectional=True
)
def forward(self, sent_reps, sent_masks):
# sent_reps: b x doc_len x sent_rep_size
# sent_masks: b x doc_len
sent_hiddens, _ = self.sent_lstm(sent_reps) # b x doc_len x hidden*2
sent_hiddens = sent_hiddens * sent_masks.unsqueeze(2)
if self.training:
sent_hiddens = self.dropout(sent_hiddens)
return sent_hiddens
# build model
class Model(nn.Module):
def __init__(self, vocab):
super(Model, self).__init__()
self.sent_rep_size = 256
self.doc_rep_size = sent_hidden_size * 2
self.all_parameters = {}
parameters = []
self.word_encoder = WordBertEncoder()
bert_parameters = self.word_encoder.get_bert_parameters()
self.sent_encoder = SentEncoder(self.sent_rep_size)
self.sent_attention = Attention(self.doc_rep_size)
parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_encoder.parameters())))
parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_attention.parameters())))
self.out = nn.Linear(self.doc_rep_size, vocab.label_size, bias=True)
parameters.extend(list(filter(lambda p: p.requires_grad, self.out.parameters())))
if use_cuda:
self.to(device)
if len(parameters) > 0:
self.all_parameters["basic_parameters"] = parameters
self.all_parameters["bert_parameters"] = bert_parameters
logging.info('Build model with bert word encoder, lstm sent encoder.')
para_num = sum([np.prod(list(p.size())) for p in self.parameters()])
logging.info('Model param num: %.2f M.' % (para_num / 1e6))
def forward(self, batch_inputs):
# batch_inputs(batch_inputs1, batch_inputs2): b x doc_len x sent_len
# batch_masks : b x doc_len x sent_len
batch_inputs1, batch_inputs2, batch_masks = batch_inputs
batch_size, max_doc_len, max_sent_len = batch_inputs1.shape[0], batch_inputs1.shape[1], batch_inputs1.shape[2]
batch_inputs1 = batch_inputs1.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
batch_inputs2 = batch_inputs2.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
batch_masks = batch_masks.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
sent_reps = self.word_encoder(batch_inputs1, batch_inputs2) # sen_num x sent_rep_size
sent_reps = sent_reps.view(batch_size, max_doc_len, self.sent_rep_size) # b x doc_len x sent_rep_size
batch_masks = batch_masks.view(batch_size, max_doc_len, max_sent_len) # b x doc_len x max_sent_len
sent_masks = batch_masks.bool().any(2).float() # b x doc_len
sent_hiddens = self.sent_encoder(sent_reps, sent_masks) # b x doc_len x doc_rep_size
doc_reps, atten_scores = self.sent_attention(sent_hiddens, sent_masks) # b x doc_rep_size
batch_outputs = self.out(doc_reps) # b x num_labels
return batch_outputs
model = Model(vocab)
2020-07-17 12:02:43,364 INFO: Build Bert vocab with size 5981.
2020-07-17 12:02:43,365 INFO: loading configuration file …/emb/bert-mini/config.json
2020-07-17 12:02:43,365 INFO: Model config BertConfig {
“attention_probs_dropout_prob”: 0.1,
“hidden_act”: “gelu”,
“hidden_dropout_prob”: 0.1,
“hidden_size”: 256,
“initializer_range”: 0.02,
“intermediate_size”: 1024,
“layer_norm_eps”: 1e-12,
“max_position_embeddings”: 256,
“model_type”: “bert”,
“num_attention_heads”: 4,
“num_hidden_layers”: 4,
“pad_token_id”: 0,
“type_vocab_size”: 2,
“vocab_size”: 5981
}
2020-07-17 12:02:43,366 INFO: loading weights file …/emb/bert-mini/pytorch_model.bin
2020-07-17 12:02:43,439 INFO: Build Bert encoder with pooled False.
2020-07-17 12:02:45,040 INFO: Build model with bert word encoder, lstm sent encoder.
2020-07-17 12:02:45,041 INFO: Model param num: 7.72 M.
# build optimizer
learning_rate = 2e-4
bert_lr = 5e-5
decay = .75
decay_step = 1000
from transformers import AdamW, get_linear_schedule_with_warmup
class Optimizer:
def __init__(self, model_parameters, steps):
self.all_params = []
self.optims = []
self.schedulers = []
for name, parameters in model_parameters.items():
if name.startswith("basic"):
optim = torch.optim.Adam(parameters, lr=learning_rate)
self.optims.append(optim)
l = lambda step: decay ** (step // decay_step)
scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=l)
self.schedulers.append(scheduler)
self.all_params.extend(parameters)
elif name.startswith("bert"):
optim_bert = AdamW(parameters, bert_lr, eps=1e-8)
self.optims.append(optim_bert)
scheduler_bert = get_linear_schedule_with_warmup(optim_bert, 0, steps)
self.schedulers.append(scheduler_bert)
for group in parameters:
for p in group['params']:
self.all_params.append(p)
else:
Exception("no nameed parameters.")
self.num = len(self.optims)
def step(self):
for optim, scheduler in zip(self.optims, self.schedulers):
optim.step()
scheduler.step()
optim.zero_grad()
def zero_grad(self):
for optim in self.optims:
optim.zero_grad()
def get_lr(self):
lrs = tuple(map(lambda x: x.get_lr()[-1], self.schedulers))
lr = ' %.5f' * self.num
res = lr % lrs
return res
# build dataset
def sentence_split(text, vocab, max_sent_len=256, max_segment=16):
words = text.strip().split()
document_len = len(words)
index = list(range(0, document_len, max_sent_len))
index.append(document_len)
segments = []
for i in range(len(index) - 1):
segment = words[index[i]: index[i + 1]]
assert len(segment) > 0
segment = [word if word in vocab._id2word else '' for word in segment]
segments.append([len(segment), segment])
assert len(segments) > 0
if len(segments) > max_segment:
segment_ = int(max_segment / 2)
return segments[:segment_] + segments[-segment_:]
else:
return segments
def get_examples(data, word_encoder, vocab, max_sent_len=256, max_segment=8):
label2id = vocab.label2id
examples = []
for text, label in zip(data['text'], data['label']):
# label
id = label2id(label)
# words
sents_words = sentence_split(text, vocab, max_sent_len-2, max_segment)
doc = []
for sent_len, sent_words in sents_words:
token_ids = word_encoder.encode(sent_words)
sent_len = len(token_ids)
token_type_ids = [0] * sent_len
doc.append([sent_len, token_ids, token_type_ids])
examples.append([id, len(doc), doc])
logging.info('Total %d docs.' % len(examples))
return examples
# build loader
def batch_slice(data, batch_size):
batch_num = int(np.ceil(len(data) / float(batch_size)))
for i in range(batch_num):
cur_batch_size = batch_size if i < batch_num - 1 else len(data) - batch_size * i
docs = [data[i * batch_size + b] for b in range(cur_batch_size)]
yield docs
def data_iter(data, batch_size, shuffle=True, noise=1.0):
"""
randomly permute data, then sort by source length, and partition into batches
ensure that the length of sentences in each batch
"""
batched_data = []
if shuffle:
np.random.shuffle(data)
lengths = [example[1] for example in data]
noisy_lengths = [- (l + np.random.uniform(- noise, noise)) for l in lengths]
sorted_indices = np.argsort(noisy_lengths).tolist()
sorted_data = [data[i] for i in sorted_indices]
else:
sorted_data =data
batched_data.extend(list(batch_slice(sorted_data, batch_size)))
if shuffle:
np.random.shuffle(batched_data)
for batch in batched_data:
yield batch
# some function
from sklearn.metrics import f1_score, precision_score, recall_score
def get_score(y_ture, y_pred):
y_ture = np.array(y_ture)
y_pred = np.array(y_pred)
f1 = f1_score(y_ture, y_pred, average='macro') * 100
p = precision_score(y_ture, y_pred, average='macro') * 100
r = recall_score(y_ture, y_pred, average='macro') * 100
return str((reformat(p, 2), reformat(r, 2), reformat(f1, 2))), reformat(f1, 2)
def reformat(num, n):
return float(format(num, '0.' + str(n) + 'f'))
# build trainer
import time
from sklearn.metrics import classification_report
clip = 5.0
epochs = 1
early_stops = 3
log_interval = 50
test_batch_size = 16
train_batch_size = 16
save_model = './bert.bin'
save_test = './bert.csv'
class Trainer():
def __init__(self, model, vocab):
self.model = model
self.report = True
self.train_data = get_examples(train_data, model.word_encoder, vocab)
self.batch_num = int(np.ceil(len(self.train_data) / float(train_batch_size)))
self.dev_data = get_examples(dev_data, model.word_encoder, vocab)
self.test_data = get_examples(test_data, model.word_encoder, vocab)
# criterion
self.criterion = nn.CrossEntropyLoss()
# label name
self.target_names = vocab.target_names
# optimizer
self.optimizer = Optimizer(model.all_parameters, steps=self.batch_num * epochs)
# count
self.step = 0
self.early_stop = -1
self.best_train_f1, self.best_dev_f1 = 0, 0
self.last_epoch = epochs
def train(self):
logging.info('Start training...')
for epoch in range(1, epochs + 1):
train_f1 = self._train(epoch)
dev_f1 = self._eval(epoch)
if self.best_dev_f1 <= dev_f1:
logging.info(
"Exceed history dev = %.2f, current dev = %.2f" % (self.best_dev_f1, dev_f1))
torch.save(self.model.state_dict(), save_model)
self.best_train_f1 = train_f1
self.best_dev_f1 = dev_f1
self.early_stop = 0
else:
self.early_stop += 1
if self.early_stop == early_stops:
logging.info(
"Eearly stop in epoch %d, best train: %.2f, dev: %.2f" % (
epoch - early_stops, self.best_train_f1, self.best_dev_f1))
self.last_epoch = epoch
break
def test(self):
self.model.load_state_dict(torch.load(save_model))
self._eval(self.last_epoch + 1, test=True)
def _train(self, epoch):
self.optimizer.zero_grad()
self.model.train()
start_time = time.time()
epoch_start_time = time.time()
overall_losses = 0
losses = 0
batch_idx = 1
y_pred = []
y_true = []
for batch_data in data_iter(self.train_data, train_batch_size, shuffle=True):
torch.cuda.empty_cache()
batch_inputs, batch_labels = self.batch2tensor(batch_data)
batch_outputs = self.model(batch_inputs)
loss = self.criterion(batch_outputs, batch_labels)
loss.backward()
loss_value = loss.detach().cpu().item()
losses += loss_value
overall_losses += loss_value
y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
y_true.extend(batch_labels.cpu().numpy().tolist())
nn.utils.clip_grad_norm_(self.optimizer.all_params, max_norm=clip)
for optimizer, scheduler in zip(self.optimizer.optims, self.optimizer.schedulers):
optimizer.step()
scheduler.step()
self.optimizer.zero_grad()
self.step += 1
if batch_idx % log_interval == 0:
elapsed = time.time() - start_time
lrs = self.optimizer.get_lr()
logging.info(
'| epoch {:3d} | step {:3d} | batch {:3d}/{:3d} | lr{} | loss {:.4f} | s/batch {:.2f}'.format(
epoch, self.step, batch_idx, self.batch_num, lrs,
losses / log_interval,
elapsed / log_interval))
losses = 0
start_time = time.time()
batch_idx += 1
overall_losses /= self.batch_num
during_time = time.time() - epoch_start_time
# reformat
overall_losses = reformat(overall_losses, 4)
score, f1 = get_score(y_true, y_pred)
logging.info(
'| epoch {:3d} | score {} | f1 {} | loss {:.4f} | time {:.2f}'.format(epoch, score, f1,
overall_losses,
during_time))
if set(y_true) == set(y_pred) and self.report:
report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
logging.info('\n' + report)
return f1
def _eval(self, epoch, test=False):
self.model.eval()
start_time = time.time()
data = self.test_data if test else self.dev_data
y_pred = []
y_true = []
with torch.no_grad():
for batch_data in data_iter(data, test_batch_size, shuffle=False):
torch.cuda.empty_cache()
batch_inputs, batch_labels = self.batch2tensor(batch_data)
batch_outputs = self.model(batch_inputs)
y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
y_true.extend(batch_labels.cpu().numpy().tolist())
score, f1 = get_score(y_true, y_pred)
during_time = time.time() - start_time
if test:
df = pd.DataFrame({'label': y_pred})
df.to_csv(save_test, index=False, sep=',')
else:
logging.info(
'| epoch {:3d} | dev | score {} | f1 {} | time {:.2f}'.format(epoch, score, f1,
during_time))
if set(y_true) == set(y_pred) and self.report:
report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
logging.info('\n' + report)
return f1
def batch2tensor(self, batch_data):
'''
[[label, doc_len, [[sent_len, [sent_id0, ...], [sent_id1, ...]], ...]]
'''
batch_size = len(batch_data)
doc_labels = []
doc_lens = []
doc_max_sent_len = []
for doc_data in batch_data:
doc_labels.append(doc_data[0])
doc_lens.append(doc_data[1])
sent_lens = [sent_data[0] for sent_data in doc_data[2]]
max_sent_len = max(sent_lens)
doc_max_sent_len.append(max_sent_len)
max_doc_len = max(doc_lens)
max_sent_len = max(doc_max_sent_len)
batch_inputs1 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
batch_inputs2 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
batch_masks = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.float32)
batch_labels = torch.LongTensor(doc_labels)
for b in range(batch_size):
for sent_idx in range(doc_lens[b]):
sent_data = batch_data[b][2][sent_idx]
for word_idx in range(sent_data[0]):
batch_inputs1[b, sent_idx, word_idx] = sent_data[1][word_idx]
batch_inputs2[b, sent_idx, word_idx] = sent_data[2][word_idx]
batch_masks[b, sent_idx, word_idx] = 1
if use_cuda:
batch_inputs1 = batch_inputs1.to(device)
batch_inputs2 = batch_inputs2.to(device)
batch_masks = batch_masks.to(device)
batch_labels = batch_labels.to(device)
return (batch_inputs1, batch_inputs2, batch_masks), batch_labels
# train
trainer = Trainer(model, vocab)
trainer.train()
2020-07-17 12:03:16,802 INFO: Total 9000 docs.
2020-07-17 12:03:20,218 INFO: Total 1000 docs.
2020-07-17 12:06:19,245 INFO: Total 50000 docs.
2020-07-17 12:06:19,245 INFO: Start training…
2020-07-17 12:06:38,493 INFO: | epoch 1 | step 50 | batch 50/563 | lr 0.00020 0.00005 | loss 2.0764 | s/batch 0.38
2020-07-17 12:06:57,096 INFO: | epoch 1 | step 100 | batch 100/563 | lr 0.00020 0.00004 | loss 1.2976 | s/batch 0.37
2020-07-17 12:07:14,320 INFO: | epoch 1 | step 150 | batch 150/563 | lr 0.00020 0.00004 | loss 0.8577 | s/batch 0.34
2020-07-17 12:07:30,075 INFO: | epoch 1 | step 200 | batch 200/563 | lr 0.00020 0.00003 | loss 0.7951 | s/batch 0.32
2020-07-17 12:07:48,252 INFO: | epoch 1 | step 250 | batch 250/563 | lr 0.00020 0.00003 | loss 0.7110 | s/batch 0.36
2020-07-17 12:08:05,002 INFO: | epoch 1 | step 300 | batch 300/563 | lr 0.00020 0.00002 | loss 0.7157 | s/batch 0.33
2020-07-17 12:08:23,702 INFO: | epoch 1 | step 350 | batch 350/563 | lr 0.00020 0.00002 | loss 0.4552 | s/batch 0.37
2020-07-17 12:08:42,488 INFO: | epoch 1 | step 400 | batch 400/563 | lr 0.00020 0.00001 | loss 0.6583 | s/batch 0.38
2020-07-17 12:08:59,988 INFO: | epoch 1 | step 450 | batch 450/563 | lr 0.00020 0.00001 | loss 0.4896 | s/batch 0.35
2020-07-17 12:09:16,801 INFO: | epoch 1 | step 500 | batch 500/563 | lr 0.00020 0.00001 | loss 0.4260 | s/batch 0.34
2020-07-17 12:09:35,899 INFO: | epoch 1 | step 550 | batch 550/563 | lr 0.00020 0.00000 | loss 0.4927 | s/batch 0.38
2020-07-17 12:09:39,842 INFO: | epoch 1 | score (70.87, 58.89, 62.61) | f1 62.61 | loss 0.8048 | time 200.59
2020-07-17 12:09:39,858 INFO:
precision recall f1-score support
科技 0.7656 0.8179 0.7909 1697
股票 0.7021 0.8923 0.7858 1680
体育 0.8852 0.9224 0.9035 1405
娱乐 0.7780 0.8157 0.7964 971
时政 0.7809 0.7028 0.7398 710
社会 0.6862 0.7133 0.6995 558
教育 0.8396 0.7363 0.7845 455
财经 0.7212 0.3099 0.4335 384
家居 0.6667 0.6043 0.6339 374
游戏 0.7772 0.5125 0.6177 279
房产 0.7063 0.4633 0.5596 218
时尚 0.6747 0.3784 0.4848 148
彩票 0.9375 0.3750 0.5357 80
星座 0.0000 0.0000 0.0000 41
accuracy 0.7647 9000
macro avg 0.7087 0.5889 0.6261 9000
weighted avg 0.7632 0.7647 0.7544 9000
/home/dell/miniconda3/envs/py36/lib/python3.6/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use zero_division
parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
2020-07-17 12:09:55,088 INFO: | epoch 1 | dev | score (77.78, 73.19, 74.56) | f1 74.56 | time 15.23
2020-07-17 12:09:55,089 INFO: Exceed history dev = 0.00, current dev = 74.56
# test
trainer.test()