Reconstructing Capsule Networks for Zero-shot Intent Classification

摘要

  • intent classification 意图分类。
  • dialogue systems 对话系统
  • 已经存在的系统并没有能力去处理快速增长的意图。
  • zero-shot intent classifcation: 零样本意图分类。
    Nevertheless 不过。
    incipient stage 初期阶段

今年来提出的IntentCapsNet

  • two unaddressed limitations:两个未解决的限制。
  • 在提取语义胶囊的时候,并不能够处理多义性。
  • 在广义零样本意图分类序列中,几乎不能够识别不可见意图的语句
  • 为了克服这个限制,我们提出了重新构建零样本意图分类的胶囊网络

方法

  • 引入:
  • a dimensional attention mechanism to fight against polysemy
  • we reconstruct the transformation matrices for unseen intents by utilizing abundant latent information of the labeled utterances.
  • 实验结果: two task-oriented dialogue datasets

介绍

  • task-oriented spoken dialogue systems :任务导向型的语言对话系统。
  • 为了提升商业效率和用户满意度,准确在用户语句之后识别用户意图。
  • user queries are sometimes short and expressed diversely
    (用户查询更短而且表达更加多元化)
  • 传统的用户意图分类方法在大量标签数据集上训练监督学习模型。在识别越来越增长的不可见意图并没有效率
  • external resources:外部资源

label ontologies

manually defined attributes

(手动定义属性)

方法1

  • utilize neural networks to project intent labels and data samples to the same semantic space. and then measure their similarity.

  • 学习一个好的映射函数是非常困难的。

  • IntentCapsNet 可以使用胶囊网络去提取高维度语义特征。 then transfers the prediction vectors for seen intents to unseen intents

  • Reconstructing Capsule Networks for Zero-shot Intent Classification_第1张图片

训练过程

    • labeled utterances are first encoded by Bi-LSTM
  • a set of semantic capsules are extracted via the dimensional attention module
  • these semantic capsules are fed to a capsule network to train a model for predicting the seen intents

测试过程

  • to predict the unseen intents, a metric learning method is trained on labeled utterances and intent label embeddings to learn the similarities between the unseen and seen intents

  • the learned similarities and the transformation matrices for the seen intents trained by capsule networks are used to construct the transformation matrices for the unseen intents
    Reconstructing Capsule Networks for Zero-shot Intent Classification_第2张图片

  • ReCapsNet-ZS 有两个成分组成:

    • 其引进 a dimensional attention module to alleviate the polysemy problem. (这能为胶囊网络帮助提取语义特征)

    • Second, it computes the similarities between unseen and seen intents by utilizing the rich latent information of labeled utterances

    • *** constructs the transformation matrices** for unseen intents with the computed similarities.

    • the trained transformation matrices for seen intents.

    相关工作

    Zero-shot Intent Classification

    • 零样本分类目的是使用从可见类别中学习到的知识
    • 得到外部资源是困难的。

    Capsule Networks

    • 胶囊网络的提出是为了解决卷积神经网络的缺陷。
    • the dynamic routing algorithm 动态路由算法。和零样文本分类的元学习框架。

    Problem Formulation

    • the set of all intent labels:
      Y = Y s ⋃ Y u Y = Y^s \bigcup Y^u Y=YsYu
      Y s = { y 1 s , y 2 s , ⋯   , y k s } Y^s = \{y^s_1,y^s_2,\cdots,y^s_k\} Ys={y1s,y2s,,yks}
      Y u = { y 1 u , y 2 u , ⋯   , y L u } Y^u = \{y^u_1,y^u_2,\cdots,y^u_{L}\} Yu={y1u,y2u,,yLu}
      是可见类别和不可见类别各自的用户标签。
      Y s ⋂ Y u = ∅ Y^s \bigcap Y^u = \emptyset YsYu=
      K 和 L K和L KL是可见类别和不可见类别用户标签的各自数量。
    • 可见类别和不可见类别用户标签的嵌入。embedding.
      E s = { e 1 s , e 2 s , ⋯   , e k s } E^s = \{e^s_1,e^s_2,\cdots,e^s_k\} Es={e1s,e2s,,eks}
      E u = { e 1 u , e 2 u , ⋯   , e L u } E^u = \{e^u_1,e^u_2,\cdots,e^u_L\} Eu={e1u,e2u,,eLu}
      每个嵌入都是 a d − d i m e n s i o n a l v e c t o r a d-dimensional vector addimensionalvector
  • 可见类别和不可见类别用户标签的联合嵌入可以使用。

    • 可见类别和不可见类别的样本语句集被标注为:
      X s = { x 1 s , x 2 s , ⋯   , x n s s } X^s = \{x^s_1,x^s_2,\cdots,x^s_{n_s}\} Xs={x1s,x2s,,xnss}
      X u = { x 1 u , x 2 u , ⋯   , x n u u } X^u = \{x^u_1,x^u_2,\cdots,x^u_{n_u}\} Xu={x1u,x2u,,xnuu}
    • n s n_s ns is the number of instances of the seen labels
    • n u n_u nu is the number of instances of the unseen labels

Zero-shot Intent Classification

Reconstructing Capsule Networks for Zero-shot Intent Classification_第3张图片

Generalized Zero-shot Intent Classification

Limitations of IntentCapsNet

  • a multi-dimensional embedding::多维度嵌入。 表示单词。
  • different dimensions of a word embedding may tend to represent different semantic meanings.
  • Reconstructing Capsule Networks for Zero-shot Intent Classification_第4张图片
  • ∣ ∣ ⋅ ∣ ∣ || \cdot|| is the L2-norm of a vector
  • R R R is the number of semantic capsules
    Reconstructing Capsule Networks for Zero-shot Intent Classification_第5张图片
    Reconstructing Capsule Networks for Zero-shot Intent Classification_第6张图片
    Reconstructing Capsule Networks for Zero-shot Intent Classification_第7张图片
    Reconstructing Capsule Networks for Zero-shot Intent Classification_第8张图片
    Reconstructing Capsule Networks for Zero-shot Intent Classification_第9张图片
    Reconstructing Capsule Networks for Zero-shot Intent Classification_第10张图片

提出的方法

Reconstructing Capsule Networks for Zero-shot Intent Classification_第11张图片
Reconstructing Capsule Networks for Zero-shot Intent Classification_第12张图片
Reconstructing Capsule Networks for Zero-shot Intent Classification_第13张图片

动态路由算法

Reconstructing Capsule Networks for Zero-shot Intent Classification_第14张图片

总结

先大致了解一波。然后慢慢的从胶囊网络开始研究,将代码啥的全部都将其搞透彻,将其研究彻底,全部研究彻底都行啦的样子。
会将零样本常用的额技术罗列起来,然后会自己堆砌,形成自己的网络结构。

你可能感兴趣的:(模块复现,人工智能)