pytorch06

pokemon数据集

pytorch06_第1张图片

pytorch06_第2张图片 

pytorch06_第3张图片Data Argumentation增大数据集 

pytorch06_第4张图片 

pytorch06_第5张图片 

pytorch06_第6张图片 

pytorch06_第7张图片 

import  torch
import  os, glob
import  random, csv

from    torch.utils.data import Dataset, DataLoader

from    torchvision import transforms
from    PIL import Image


class Pokemon(Dataset):

    def __init__(self, root, resize, mode):
        super(Pokemon, self).__init__()

        self.root = root
        self.resize = resize

        self.name2label = {} # "sq...":0
        for name in sorted(os.listdir(os.path.join(root))):
            if not os.path.isdir(os.path.join(root, name)):
                continue

            self.name2label[name] = len(self.name2label.keys())

        # print(self.name2label)

        # image, label
        self.images, self.labels = self.load_csv('images.csv')

        if mode=='train': # 60%
            self.images = self.images[:int(0.6*len(self.images))]
            self.labels = self.labels[:int(0.6*len(self.labels))]
        elif mode=='val': # 20% = 60%->80%
            self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]
            self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]
        else: # 20% = 80%->100%
            self.images = self.images[int(0.8*len(self.images)):]
            self.labels = self.labels[int(0.8*len(self.labels)):]





    def load_csv(self, filename):

        if not os.path.exists(os.path.join(self.root, filename)):
            images = []
            for name in self.name2label.keys():
                # 'pokemon\\mewtwo\\00001.png
                images += glob.glob(os.path.join(self.root, name, '*.png'))
                images += glob.glob(os.path.join(self.root, name, '*.jpg'))
                images += glob.glob(os.path.join(self.root, name, '*.jpeg'))

            # 1167, 'pokemon\\bulbasaur\\00000000.png'
            print(len(images), images)

            random.shuffle(images)
            with open(os.path.join(self.root, filename), mode='w', newline='') as f:
                writer = csv.writer(f)
                for img in images: # 'pokemon\\bulbasaur\\00000000.png'
                    name = img.split(os.sep)[-2]
                    label = self.name2label[name]
                    # 'pokemon\\bulbasaur\\00000000.png', 0
                    writer.writerow([img, label])
                print('writen into csv file:', filename)

        # read from csv file
        images, labels = [], []
        with open(os.path.join(self.root, filename)) as f:
            reader = csv.reader(f)
            for row in reader:
                # 'pokemon\\bulbasaur\\00000000.png', 0
                img, label = row
                label = int(label)

                images.append(img)
                labels.append(label)

        assert len(images) == len(labels)

        return images, labels



    def __len__(self):

        return len(self.images)


    def denormalize(self, x_hat):

        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225]

        # x_hat = (x-mean)/std
        # x = x_hat*std = mean
        # x: [c, h, w]
        # mean: [3] => [3, 1, 1]
        mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)
        std = torch.tensor(std).unsqueeze(1).unsqueeze(1)
        # print(mean.shape, std.shape)
        x = x_hat * std + mean

        return x


    def __getitem__(self, idx):
        # idx~[0~len(images)]
        # self.images, self.labels
        # img: 'pokemon\\bulbasaur\\00000000.png'
        # label: 0
        img, label = self.images[idx], self.labels[idx]

        tf = transforms.Compose([
            lambda x:Image.open(x).convert('RGB'), # string path= > image data
            transforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),
            transforms.RandomRotation(15),
            transforms.CenterCrop(self.resize),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])

        img = tf(img)
        label = torch.tensor(label)


        return img, label





def main():

    import  visdom
    import  time
    import  torchvision

    viz = visdom.Visdom()

    # tf = transforms.Compose([
    #                 transforms.Resize((64,64)),
    #                 transforms.ToTensor(),
    # ])
    # db = torchvision.datasets.ImageFolder(root='pokemon', transform=tf)
    # loader = DataLoader(db, batch_size=32, shuffle=True)
    #
    # print(db.class_to_idx)
    #
    # for x,y in loader:
    #     viz.images(x, nrow=8, win='batch', opts=dict(title='batch'))
    #     viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
    #
    #     time.sleep(10)


    db = Pokemon('pokemon', 64, 'train')

    x,y = next(iter(db))
    print('sample:', x.shape, y.shape, y)

    viz.image(db.denormalize(x), win='sample_x', opts=dict(title='sample_x'))

    loader = DataLoader(db, batch_size=32, shuffle=True, num_workers=8)

    for x,y in loader:
        viz.images(db.denormalize(x), nrow=8, win='batch', opts=dict(title='batch'))
        viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))

        time.sleep(10)

if __name__ == '__main__':
    main()

 resnet

import  torch
from    torch import  nn
from    torch.nn import functional as F



class ResBlk(nn.Module):
    """
    resnet block
    """

    def __init__(self, ch_in, ch_out, stride=1):
        """
        :param ch_in:
        :param ch_out:
        """
        super(ResBlk, self).__init__()

        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential()
        if ch_out != ch_in:
            # [b, ch_in, h, w] => [b, ch_out, h, w]
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
                nn.BatchNorm2d(ch_out)
            )


    def forward(self, x):
        """
        :param x: [b, ch, h, w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # short cut.
        # extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
        # element-wise add:
        out = self.extra(x) + out
        out = F.relu(out)

        return out




class ResNet18(nn.Module):

    def __init__(self, num_class):
        super(ResNet18, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),
            nn.BatchNorm2d(16)
        )
        # followed 4 blocks
        # [b, 16, h, w] => [b, 32, h ,w]
        self.blk1 = ResBlk(16, 32, stride=3)
        # [b, 32, h, w] => [b, 64, h, w]
        self.blk2 = ResBlk(32, 64, stride=3)
        # # [b, 64, h, w] => [b, 128, h, w]
        self.blk3 = ResBlk(64, 128, stride=2)
        # # [b, 128, h, w] => [b, 256, h, w]
        self.blk4 = ResBlk(128, 256, stride=2)

        # [b, 256, 7, 7]
        self.outlayer = nn.Linear(256*3*3, num_class)

    def forward(self, x):
        """
        :param x:
        :return:
        """
        x = F.relu(self.conv1(x))

        # [b, 64, h, w] => [b, 1024, h, w]
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)

        # print(x.shape)
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)


        return x



def main():
    blk = ResBlk(64, 128)
    tmp = torch.randn(2, 64, 224, 224)
    out = blk(tmp)
    print('block:', out.shape)


    model = ResNet18(5)
    tmp = torch.randn(2, 3, 224, 224)
    out = model(tmp)
    print('resnet:', out.shape)

    p = sum(map(lambda p:p.numel(), model.parameters()))
    print('parameters size:', p)


if __name__ == '__main__':
    main()

Auto Encoder

你可能感兴趣的:(深度学习,人工智能,计算机视觉)