神经网络阈值怎么设置,神经网络参数怎么设置

神经网络阈值怎么设置,神经网络参数怎么设置_第1张图片

BP神经网络中初始权值和阈值的设定

1、首先需要了解BP神经网络是一种多层前馈网络。2、以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。

3、在matlab中命令行窗口中定义输入P,输出T,·通过“newff(minmax(P),[5,1]构建BP神经网络,“[net,tr]=train(net,P,T);”进行网络训练,“sim(net,P)”得到仿真预测值。

4、在命令行窗口按回车键之后,可以看到出现结果弹窗,最上面的NeuralNetwork下面依次代表的是“输入、隐含层、输出层、输出”,隐含层中有5个神经元。

5、Progress下面的Epoch代表迭代次数,Gradient代表梯度,VaildationChecks代表有效性检查,最后的绿色对勾代表性能目标达成。

6、最后将实际曲线和预测曲线绘制出来,可以看到使用BP神经网络预测的结果曲线基本和实际输出曲线一致。

谷歌人工智能写作项目:小发猫

BP神经网络的阀值调节怎么弄的?

BP神经网络中,如何设定神经元的初始连接权重以及阀值?

初始连接权重关系到网络训练速度的快慢以及收敛速率,在基本的神经网络中,这个权重是随机设定的。在网络训练的过程中沿着误差减小的方向不断进行调整。

针对这个权重的随机性不确定的缺点,有人提出了用遗传算法初始化BP的初始权重和阈值的想法,提出了遗传神经网络模型,并且有人预言下一代的神经网络将会是遗传神经网络。希望对你有所帮助。你可以查看这方面的文献。

BP神经网络中为什么设置阈值?

BP神经网络训练出来的权值与阀值怎么用??? 30

说句实在话,如果你还要改神经元网络的隐含层层数或者神经元个数,那这个训练得到的权值和阈值没什么用处。

如果你训练的神经网络已经能很好完成你所需要做的分类或者其他工作,你直接用的是用新的样本数据作为输入去为这个新样本划分类别就行了,不用考虑权值和阈值他们就自然在这个归类中起作用了,类似于有人给你看蛇的图片,你可以在现实生活中见到蛇时候明白这就是蛇的道理一样,这个权值和阈值就像已经训练到你神经中的一些链接一样在你面对新的类似的事物时起作用。

神经网络BP算法中,如何选择网络学习效率及阈值调整效率

一个关于BP神经网络的问题,matlab中神经网络工具箱的初始权值和阀值是

训练BP神经网络所采取的随机初始参数确实是随机的,在训练过程中这些参数和权值都会朝着同一个大方向进行修正。

例如你用BP神经网络来拟合曲线,找到输入值与输出值之间的线性规律,那么在训练的过程中这个拟合的曲线会不断的调整其参数和权值直到满足几个预设条件之一时训练停止。

虽然这个训练出来的结果有时候会有一定误差,但都在可以接受的范围内。缩小误差的一个方法是需要预先设置初始参数,虽然每次依然会得到不一样的模型(只要参数是随机修正的),但不同模型之间的差距会很小。

另外可以反复训练,找到一个自己觉得满意的模型(可以是测试通过率最高,可以是平均结果误差值最小)。

至于你说别人怎么检查你的论文结果,基本上都是通过你的算法来重建模型,而且还不一定都用matlab来做,即便是用同样的代码都会出现不同的结果,何况是不同的语言呢?

其实验算结果最重要的是看测试时的通过率,例如在对一组新的数据进行测试(或预测)时,通过率达到95%,别人用其他的方式重建了你的模型也得到这样的通过率,那么你的算法就是可行的。

注意,在计算机专业的论文里面大家看重的不是代码,而是算法。

补充一点:只要你训练好了一个神经网络可以把这个神经网络以struct形式保存,这样这个网络可以被反复使用,且每次对同一组测试数据的预测结果都会一样。你也可以当做是检测论文可行性的工具。

神经网络阀值是什么?

神经网络中阈值和权值的初值怎么调整?为什么我的老是误差特别大呢?

你可能感兴趣的:(神经网络,机器学习,深度学习)