车牌识别系统论文python_毕业设计 python opencv实现车牌识别 界面

#-*- coding: utf-8 -*-

__author__ = '樱花落舞'

importtkinter as tkfrom tkinter.filedialog import *

from tkinter importttkimportimg_function as predictimportcv2from PIL importImage, ImageTkimportthreadingimporttimeimportimg_mathimporttracebackimportdebugimportconfigfrom threading importThreadclassThreadWithReturnValue(Thread):def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None):

Thread.__init__(self, group, target, name, args, kwargs, daemon=daemon)

self._return1=None

self._return2=None

self._return3=Nonedefrun(self):if self._target is notNone:

self._return1,self._return2,self._return3= self._target(*self._args, **self._kwargs)defjoin(self):

Thread.join(self)returnself._return1,self._return2,self._return3classSurface(ttk.Frame):

pic_path= ""viewhigh= 600viewwide= 600update_time=0

thread=None

thread_run=False

camera=None

color_transform= {"green": ("绿牌", "#55FF55"), "yello": ("黄牌", "#FFFF00"), "blue": ("蓝牌", "#6666FF")}def __init__(self, win):

ttk.Frame.__init__(self, win)

frame_left=ttk.Frame(self)

frame_right1=ttk.Frame(self)

frame_right2=ttk.Frame(self)

win.title("车牌识别")

win.state("zoomed")

self.pack(fill=tk.BOTH, expand=tk.YES, padx="10", pady="10")

frame_left.pack(side=LEFT, expand=1, fill=BOTH)

frame_right1.pack(side=TOP, expand=1, fill=tk.Y)

frame_right2.pack(side=RIGHT, expand=0)

ttk.Label(frame_left, text='原图:').pack(anchor="nw")

ttk.Label(frame_right1, text='形状定位车牌位置:').grid(column=0, row=0, sticky=tk.W)

from_pic_ctl= ttk.Button(frame_right2, text="来自图片", width=20, command=self.from_pic)

from_vedio_ctl= ttk.Button(frame_right2, text="来自摄像头", width=20, command=self.from_vedio)

from_img_pre= ttk.Button(frame_right2, text="查看形状预处理图像", width=20,command =self.show_img_pre)

self.image_ctl=ttk.Label(frame_left)

self.image_ctl.pack(anchor="nw")

self.roi_ctl=ttk.Label(frame_right1)

self.roi_ctl.grid(column=0, row=1, sticky=tk.W)

ttk.Label(frame_right1, text='形状定位识别结果:').grid(column=0, row=2, sticky=tk.W)

self.r_ctl= ttk.Label(frame_right1, text="",font=('Times','20'))

self.r_ctl.grid(column=0, row=3, sticky=tk.W)

self.color_ctl= ttk.Label(frame_right1, text="", width="20")

self.color_ctl.grid(column=0, row=4, sticky=tk.W)

from_vedio_ctl.pack(anchor="se", pady="5")

from_pic_ctl.pack(anchor="se", pady="5")

from_img_pre.pack(anchor="se", pady="5")

ttk.Label(frame_right1, text='颜色定位车牌位置:').grid(column=0, row=5, sticky=tk.W)

self.roi_ct2=ttk.Label(frame_right1)

self.roi_ct2.grid(column=0, row=6, sticky=tk.W)

ttk.Label(frame_right1, text='颜色定位识别结果:').grid(column=0, row=7, sticky=tk.W)

self.r_ct2= ttk.Label(frame_right1, text="",font=('Times','20'))

self.r_ct2.grid(column=0, row=8, sticky=tk.W)

self.color_ct2= ttk.Label(frame_right1, text="", width="20")

self.color_ct2.grid(column=0, row=9, sticky=tk.W)

self.predictor=predict.CardPredictor()

self.predictor.train_svm()defget_imgtk(self, img_bgr):

img=cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

im=Image.fromarray(img)

imgtk= ImageTk.PhotoImage(image=im)

wide=imgtk.width()

high=imgtk.height()if wide > self.viewwide or high >self.viewhigh:

wide_factor= self.viewwide /wide

high_factor= self.viewhigh /high

factor=min(wide_factor, high_factor)

wide= int(wide *factor)if wide <= 0: wide = 1high= int(high *factor)if high <= 0: high = 1im=im.resize((wide, high), Image.ANTIALIAS)

imgtk= ImageTk.PhotoImage(image=im)returnimgtkdefshow_roi1(self, r, roi, color):ifr:

roi=cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)

roi=Image.fromarray(roi)

self.imgtk_roi= ImageTk.PhotoImage(image=roi)

self.roi_ctl.configure(image=self.imgtk_roi, state='enable')

self.r_ctl.configure(text=str(r))

self.update_time=time.time()try:

c=self.color_transform[color]

self.color_ctl.configure(text=c[0], background=c[1], state='enable')except:

self.color_ctl.configure(state='disabled')elif self.update_time + 8

self.roi_ctl.configure(state='disabled')

self.r_ctl.configure(text="")

self.color_ctl.configure(state='disabled')defshow_roi2(self, r, roi, color):ifr:

roi=cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)

roi=Image.fromarray(roi)

self.imgtk_roi= ImageTk.PhotoImage(image=roi)

self.roi_ct2.configure(image=self.imgtk_roi, state='enable')

self.r_ct2.configure(text=str(r))

self.update_time=time.time()try:

c=self.color_transform[color]

self.color_ct2.configure(text=c[0], background=c[1], state='enable')except:

self.color_ct2.configure(state='disabled')elif self.update_time + 8

self.roi_ct2.configure(state='disabled')

self.r_ct2.configure(text="")

self.color_ct2.configure(state='disabled')defshow_img_pre(self):

filename=config.get_name()if filename.any() ==True:

debug.img_show(filename)deffrom_vedio(self):ifself.thread_run:return

if self.camera isNone:

self.camera=cv2.VideoCapture(0)if notself.camera.isOpened():

mBox.showwarning('警告', '摄像头打开失败!')

self.camera=Nonereturnself.thread= threading.Thread(target=self.vedio_thread, args=(self,))

self.thread.setDaemon(True)

self.thread.start()

self.thread_run=Truedeffrom_pic(self):

self.thread_run=False

self.pic_path= askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg"), ("png图片", "*.png")])ifself.pic_path:

img_bgr=img_math.img_read(self.pic_path)

first_img, oldimg=self.predictor.img_first_pre(img_bgr)

self.imgtk=self.get_imgtk(img_bgr)

self.image_ctl.configure(image=self.imgtk)

th1= ThreadWithReturnValue(target=self.predictor.img_color_contours,args=(first_img,oldimg))

th2= ThreadWithReturnValue(target=self.predictor.img_only_color,args=(oldimg,oldimg,first_img))

th1.start()

th2.start()

r_c, roi_c, color_c=th1.join()

r_color,roi_color,color_color=th2.join()print(r_c,r_color)

self.show_roi2(r_color, roi_color, color_color)

self.show_roi1(r_c, roi_c, color_c)

@staticmethoddefvedio_thread(self):

self.thread_run=True

predict_time=time.time()whileself.thread_run:

_, img_bgr=self.camera.read()

self.imgtk=self.get_imgtk(img_bgr)

self.image_ctl.configure(image=self.imgtk)if time.time() - predict_time > 2:

r, roi, color=self.predictor(img_bgr)

self.show_roi(r, roi, color)

predict_time=time.time()print("run end")defclose_window():print("destroy")ifsurface.thread_run:

surface.thread_run=False

surface.thread.join(2.0)

win.destroy()if __name__ == '__main__':

win=tk.Tk()

surface=Surface(win)#close,退出输出destroy

win.protocol('WM_DELETE_WINDOW', close_window)#进入消息循环

win.mainloop()

你可能感兴趣的:(车牌识别系统论文python)