卷积神经网络学习日记(VGG)学习日记

VGG与AlexNet网络结构差异图示(来自李沫《动手学深度学习》)

卷积神经网络学习日记(VGG)学习日记_第1张图片

 一个VGG块由一系列卷积层组成,在最后连接一个最大汇聚层

VGG块代码如下所示:

该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels

import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

 VGG网络实现代码:

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

网络结构:

其中sequential层为自定义的VGG层 

Sequential output shape:     torch.Size([1, 64, 112, 112])
Sequential output shape:     torch.Size([1, 128, 56, 56])
Sequential output shape:     torch.Size([1, 256, 28, 28])
Sequential output shape:     torch.Size([1, 512, 14, 14])
Sequential output shape:     torch.Size([1, 512, 7, 7])
Flatten output shape:        torch.Size([1, 25088])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 10])

小结:VGG网络使用可复用的卷积块(VGG块)构造网络,使用块定义的网络十分简洁,避免了逐行逐句编写网络结构,使用块可高效构建层次深的网络结构。

你可能感兴趣的:(cnn,学习,神经网络)