扫描全能王的实现,maybe
目录
一、文档扫描
1、引入所需要的库
2、图像的读取与预处理
读取图像
图像reszie,
图像灰度化、滤波、边缘检测。
3、轮廓检测
4、透视与二值变换
二、文字识别
文档扫描所实现的功能如下图所示,左侧为原始图像,右侧为扫描后的图像。
import numpy as np
import argparse
import cv2
import matplotlib.pyplot as plt
def cv_show(name, img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def plt_show(img):
b, g, r = cv2.split(img)
res = cv2.merge([r, g, b])
plt.imshow(res)
原始项目的源码中使用了ArgumentParser对象编辑,在运行程序前还需要设置edit configuration中的Paramerter参数,在这里我们直接使用设定一字典。
# 设置args参数,这里我们直接用字典表示
args = {'image': 'images\\page.jpg'}
# 读取输入
image = cv2.imread(args['image'])
plt_show(image)
因为原图尺寸比较大,所以我们先将图片resize比较小的尺寸,在这里我们预设resize后的图片的height为500.
# 图像resize
ratio = image.shape[0] / 500.0
orig = image.copy()
image = resize(orig, height=500)
plt_show(image)
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w*r), height)
else:
r = width / float(w)
dim = (wigth, int(h*r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
这里需要定义resize函数,这里遵循的原则就是进行等比例的resize
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w*r), height)
else:
r = width / float(w)
dim = (wigth, int(h*r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
灰度化和滤波操作不必多说,进行边缘检测的目的是为下一步的轮廓检测做准备。
# 灰度化、滤波、边缘检测
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200)
# 展示预处理结果
print("STEP 1: 边缘检测")
plt_show(image)
plt.imshow(edged, cmap='gray')
使用cv2.findContours()函数进行轮廓检测,并进行轮廓排序
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]
因为这些轮廓可能只是一些离散的点,或者是一些不规则图形,这里我们将轮廓近似为矩形
# 遍历轮廓
for c in cnts:
# 计算轮廓近似
peri = cv2.arcLength(c, True)
# c表示输入的点集
# epslion表示原始轮廓到近似轮廓的最大距离,它是一个准确度参数
# True表示封闭的
approx = cv2.approxPolyDP(c, 0.02*peri, True)
# 4个点的时候就拿出来
if len(approx) == 4:
screenCnt = approx
break
# 展示结果
print("STEP 2: 获取轮廓")
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
plt_show(image)
这里我们定义了four_point_transform()函数
def four_point_transform(image, pts):
# 获取输入坐标点
rect = order_points(pts)
(tl, tr, br, bl) = rect
# 计算输入的w和h(两点之间的距离公式)
widthA = np.sqrt(((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# 变换后对应坐标位置
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype='float32')
# 计算变换矩阵
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# 返回变换后结果
return warped
def order_points(pts):
# 一共4个坐标点
rect = np.zeros((4, 2), dtype='float32')
# 按顺序找到对应坐标0123分别是 左上、右上、右下、左下
# 计算左上、右下
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# 计算右上、左下
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
# 透视变换
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
plt_show(warped)
二值处理
# 二值处理
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]
plt.imshow(warped, cmap='gray')
使用tesseract-ocr进行文字识别,这个有时间再补充。