基于C#的机器人仿真平台和机器人运动学算法实现

一、平台搭建

1.利用wpf自带的库进行机器人各关节导入

基于C#的机器人仿真平台和机器人运动学算法实现_第1张图片

基于C#的机器人仿真平台和机器人运动学算法实现_第2张图片

相关代码段:


            
            
        
        
            
            
        
        
            
            
        
private const string MODEL_PATH1 = "Base.stl";
private const string MODEL_PATH2 = "Asse1.stl";
private const string MODEL_PATH3 = "Asse2.stl";
private const string MODEL_PATH4 = "Asse3.stl";
private const string MODEL_PATH5 = "Asse4.stl";
private const string MODEL_PATH6 = "Asse5.stl";
private const string MODEL_PATH7 = "Asse6.stl";
private const string MODEL_PATH8 = "Leva.stl";
private const string MODEL_PATH9 = "Asta.stl";

导入效果如图:

基于C#的机器人仿真平台和机器人运动学算法实现_第3张图片

效果视频:

2.通过正运动学显示机器人当前位置信息

基于C#的机器人仿真平台和机器人运动学算法实现_第4张图片

拖动机器人并且实时改变其位置信息:

xaml代码部分:


        
        
        

算法部分:

 //第一种DH建模的方式
        public static void Q2T(double ai,double di,double θi, double αi, ref double[,] T)
        //正运动学方程模型矩阵
        public static void Q2T2(double ai, double di, double θi, double αi, ref double[,] T)
        public void diretta(double q1, double q2, double q3,
           double q4, double q5, double q6, ref double[] C,ref double[,] resR)
        {
            Q2T2(a0, d1, q1, 0,ref T01);
            Q2T2(a1, d2, q2, -90, ref T12);
            Q2T2(a2, d3, q3, 0, ref T23);
            Q2T2(a3, d4, q4, -90, ref T34);
            Q2T2(a4, d5, q5, 90, ref T45);
            Q2T2(a5, d6, q6, -90, ref T56);

            T02 = math_matrix.MatrixMult(T01,T12);
            T03 = math_matrix.MatrixMult(T02, T23);
            T04 = math_matrix.MatrixMult(T03, T34);
            T05 = math_matrix.MatrixMult(T04, T45);
            T06 = math_matrix.MatrixMult(T05, T56);
            T35 = math_matrix.MatrixMult(T34, T45);
            T36 = math_matrix.MatrixMult(T35, T56);//T36 = t36
            double[,] inv03 = math_matrix.MatInverse(T03);
            double[,] t36 = math_matrix.MatrixMult(inv03,T06);//T36 = t36

            //求得机器人末端相对于机器人基坐标系的位置关系(x,y,z)
            C[0] = T06[0, 3];
            C[1] = T06[1, 3];
            C[2] = T06[2, 3];
            initC[0] = T06[0, 3];
            initC[1] = T06[1, 3];
            initC[2] = T06[2, 3];

            R36[0, 0] = T36[0, 0];
            R36[0, 1] = T36[0, 1];
            R36[0, 2] = T36[0, 2];

            R36[1, 0] = T36[1, 0];
            R36[1, 1] = T36[1, 1];
            R36[1, 2] = T36[1, 2];

            R36[2, 0] = T36[2, 0];
            R36[2, 1] = T36[2, 1];
            R36[2, 2] = T36[2, 2];
            
        }

 3.功能实现(在X/Y/Z轴上设置一个移动距离,然后机器人自动移动该距离)

基于C#的机器人仿真平台和机器人运动学算法实现_第5张图片

 效果如图:

附上运动学算法代码:

 public void Rob_Ik(double[] qc, double[] q)
        {         
        }
        //我们以RPY作为机器人的旋转方式
        public void RPY2R(double[] rpy,ref double[,] R)
        {
            double cos_roll = Math.Cos(rpy[0]);
            double cos_pitch = Math.Cos(rpy[1]);
            double cos_yaw = Math.Cos(rpy[2]);

            double sin_roll = Math.Sin(rpy[0]);
            double sin_pitch = Math.Sin(rpy[1]);
            double sin_yaw = Math.Sin(rpy[2]);

            R[0, 0] = cos_roll * cos_pitch;
            R[0, 1] = (cos_roll * sin_pitch * sin_pitch) - (sin_roll*cos_yaw);
            R[0, 2] = (cos_roll * sin_pitch * cos_yaw) - (sin_roll * sin_yaw);
            R[1, 0] = sin_roll * cos_pitch;
            R[1, 1] = (sin_roll * sin_pitch * sin_yaw) - (cos_roll * cos_yaw);
            R[1, 2] = (sin_roll * sin_pitch * cos_yaw) - (cos_roll * sin_yaw);
            R[2, 0] = -sin_pitch;
            R[2, 1] = cos_pitch * sin_yaw;
            R[2, 2] = cos_pitch * cos_yaw;
        }
        public void R2PRY(double[,] R,ref double[] rpy)
        {
            rpy[0] = Math.Atan2(R[1,0],R[0,0]);
            rpy[1] = Math.Atan2(-R[2, 1], (R[0, 0] * Math.Cos(rpy[0]) + R[1, 0] * Math.Sin(rpy[0])));
            rpy[2] = Math.Atan2((-R[1,2]*Math.Cos(rpy[0])+R[0,2]*Math.Sin(rpy[0])),(R[1,1]*Math.Cos(rpy[0])-R[0,1]*Math.Sin(rpy[0])));
        }
        public void T2E(double[,] R,ref double[] Euler)
        {
            Euler[0] = Math.Atan2(Math.Sqrt(Math.Pow(R[2,0], 2) +Math. Pow(R[2,1], 2)), R[2,2]);
            Euler[1] = Math.Atan2(R[1,2] /Math.Sin(Euler[0]), R[0,2] / Math.Sin(Euler[0]));
            Euler[2] = Math.Atan2(R[2,1] /Math.Sin(Euler[0]), -R[2,0] /Math.Sin(Euler[0]));
        }

4.通过选定运动方式和步进参数,单步移动各轴(各轴联合运动)

基于C#的机器人仿真平台和机器人运动学算法实现_第6张图片

移动后效果图:

基于C#的机器人仿真平台和机器人运动学算法实现_第7张图片

效果视频:

代码:

 private void Button_Click_4(object sender, RoutedEventArgs e)
        {
            if (Continuity_Motion.IsChecked == true)
            {
                minus_x.Clear();
                for (int i = 0; i < Convert.ToInt32(text_x.Text); i = i + 1)
                {
                    minus_x.Add(i);
                }
                for (int j = 0; j < minus_x.Count; j++)
                {
                    double[] qcii = new double[6];
                    qcii[0] = inverse.initC[0];//移动z
                    qcii[1] = inverse.initC[1];//移动y          
                    qcii[2] = inverse.initC[2] - minus_x[j];//移动x            
                    qcii[3] = inverse.euler[0];
                    qcii[4] = inverse.euler[1];
                    qcii[5] = inverse.euler[2];
                    double[] q = new double[6];
                    m_inverse.Rob_Ik(qcii, q);
                    refresh(inverse.g1, inverse.g2, inverse.g3, inverse.g4 - 90, inverse.g5 - 90, inverse.g6 + 90);
                    Delay(5);
                }
            }
            else if(Once_Motion.IsChecked == true)
            {
                qci[0] = inverse.initC[0] + record_z_increase - record_z_reduce;//移动z
                qci[1] = inverse.initC[1] + record_y_increase - record_y_reduce;//移动y   
                oadd_x = oadd_x + Convert.ToDouble(text_step.Text);
                qci[2] = inverse.initC[2]+oadd_x-record_x_reduce;//移动x            
                qci[3] = inverse.euler[0];
                qci[4] = inverse.euler[1];
                qci[5] = inverse.euler[2];
                double[] q = new double[6];
                m_inverse.Rob_Ik(qci, q);
                refresh(inverse.g1, inverse.g2, inverse.g3, inverse.g4 - 90, inverse.g5 - 90, inverse.g6 + 90);
                
                Delay(5);
            }
            else
            {
                MessageBox.Show("请选择移动模式!");
            }
        }

 5.基于直线轨迹规划的机器人移动(规划算法加逆解算法)

基于C#的机器人仿真平台和机器人运动学算法实现_第8张图片

 效果视频:

 代码部分:


        public void Plan_path(double xs, double ys, double zs, double xe, double ye, double ze, double speed)
        private void Button_Click_9(object sender, RoutedEventArgs e)
        {
             pos[0] = qci[0];
             pos[1] = qci[1];
             pos[2] = qci[2];
             pos[3] = inverse.g4;
             pos[4] = inverse.g5;
             pos[5] = inverse.g6;
            plp1[0] = pos[0];
            plp1[1] = pos[1];
            plp1[2] = pos[2];
            MessageBox.Show("位置一已记录!");
        }

        private void Button_Click_10(object sender, RoutedEventArgs e)
        {
            pos_1[0] = qci[0];
            pos_1[1] = qci[1];
            pos_1[2] = qci[2];
            pos_1[3] = inverse.g4;
            pos_1[4] = inverse.g5;
            pos_1[5] = inverse.g6;
            plp2[0] = pos_1[0];
            plp2[1] = pos_1[1];
            plp2[2] = pos_1[2];
            MessageBox.Show("位置二已记录!");
        }
public void LinePath()
{
linerPath.Plan_path(pos[2],pos[1],pos[0],pos_1[2],pos_1[1],pos_1[0],5);
            if (loop_sport.IsChecked == true)
            {
                loop = true;
                while (loop)
                {
                    for (int i = 0; i < linerPath.x_start.Count; i++)
                    {
                        double[] linepos = new double[6];
                        linepos[2] = linerPath.x_start[i];
                        linepos[1] = linerPath.y_start[i];
                        linepos[0] = linerPath.z_start[i];
                        linepos[3] = inverse.euler[0];
                        linepos[4] = inverse.euler[1];
                        linepos[5] = inverse.euler[2];
                        double[] q = new double[6];
                        m_inverse.Rob_Ik(linepos, q);
                        refresh(inverse.g1, inverse.g2, inverse.g3, inverse.g4 - 90, inverse.g5 - 90, inverse.g6 + 90);
                        Delay(20);

                    }
                }
}

Xaml代码:

        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:WpfApp3"
        xmlns:helix ="http://helix-toolkit.org/wpf"
        mc:Ignorable="d"
        d:DesignHeight="300" d:DesignWidth="800" Background="#FF383333">
   

       
           
           
       

       
           
           
       

       
           
           
       

       

你可能感兴趣的:(机器人运动学,机器人模拟仿真,机器人)