详细解释在代码注释中 :
resnet50.py:用来保存resnet网络结构。
import torch
import torch.nn as nn
from torch.nn import functional as F
import torchsummary
class Bottleneck(nn.Module):
"""
__init__
in_channel:残差块输入通道数
out_channel:残差块输出通道数
stride:卷积步长
downsample:在_make_layer函数中赋值,用于控制shortcut图片下采样 H/2 W/2,来区分Bottleneck1与2
"""
expansion = 4 # 残差块第3个卷积层的通道膨胀倍率
def __init__(self, in_channel, out_channel, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False) # H,W不变。C: in_channel -> out_channel
self.bn1 = nn.BatchNorm2d(num_features=out_channel)
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, bias=False, padding=1) # H/2,W/2。C不变
self.bn2 = nn.BatchNorm2d(num_features=out_channel)
self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion, kernel_size=1, stride=1, bias=False) # H,W不变。C: out_channel -> 4*out_channel
self.bn3 = nn.BatchNorm2d(num_features=out_channel*self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x # 将原始输入暂存为shortcut的输出
if self.downsample is not None:
identity = self.downsample(x) # 如果需要下采样,那么shortcut后:H/2,W/2。C: out_channel -> 4*out_channel(见ResNet50中的downsample实现)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += identity # 残差连接
out = self.relu(out)
return out
# todo ResNet
class ResNet50(nn.Module):
"""
__init__
block: 堆叠的基本模块
block_num: 基本模块堆叠个数,是一个list,对于resnet50=[3,4,6,3]
num_classes: 全连接之后的分类特征维度
_make_layer
block: 堆叠的基本模块
channel: 每个stage中堆叠模块的第一个卷积的卷积核个数,对resnet50分别是:64,128,256,512
block_num: 当期stage堆叠block个数
stride: 默认卷积步长
"""
def __init__(self, block=Bottleneck, block_num=[3, 4, 6, 3], num_classes=1000):
super(ResNet50, self).__init__()
self.in_channel = 64 # conv1的输出维度
self.conv1 = nn.Conv2d(in_channels=3, out_channels=self.in_channel, kernel_size=7, stride=2, padding=3,
bias=False) # H/2,W/2。C:3->64 H^/W^ = (H/W-K+2*p)/S+1
self.bn1 = nn.BatchNorm2d(self.in_channel)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # H/2,W/2。C不变
self.layer1 = self._make_layer(block=block, channel=64, block_num=block_num[0],
stride=1) # H,W不变。downsample控制的shortcut,out_channel=64x4=256
self.layer2 = self._make_layer(block=block, channel=128, block_num=block_num[1],
stride=2) # H/2, W/2。downsample控制的shortcut,out_channel=128x4=512
self.layer3 = self._make_layer(block=block, channel=256, block_num=block_num[2],
stride=2) # H/2, W/2。downsample控制的shortcut,out_channel=256x4=1024
self.layer4 = self._make_layer(block=block, channel=512, block_num=block_num[3],
stride=2) # H/2, W/2。downsample控制的shortcut,out_channel=512x4=2048
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # 将每张特征图大小->(1,1),则经过池化后的输出维度=通道数
self.fc = nn.Linear(in_features=512 * block.expansion, out_features=num_classes)
for m in self.modules(): # 权重初始化
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') #均值为0的随机正态分布,fan_out保留了向后传递的幅度
def _make_layer(self, block, channel, block_num, stride=1):
downsample = None # 用于控制shorcut的
if stride != 1 or self.in_channel != channel * block.expansion: # 对resnet50:conv2中特征图尺寸H,W不需要下采样/2,但是通道数x4,因此shortcut通道数也需要x4。对其余conv3,4,5,既要特征图尺寸H,W/2,又要shortcut维度x4
downsample = nn.Sequential(
nn.Conv2d(in_channels=self.in_channel, out_channels=channel * block.expansion, kernel_size=1,
stride=stride, bias=False), # out_channels决定输出通道数x4,stride决定特征图尺寸H,W/2
nn.BatchNorm2d(num_features=channel * block.expansion))
layers = [] # 每一个convi_x的结构保存在一个layers列表中,i={2,3,4,5}
layers.append(block(in_channel=self.in_channel, out_channel=channel, downsample=downsample,
stride=stride)) # 定义convi_x中的第一个残差块,只有第一个需要设置downsample和stride
self.in_channel = channel * block.expansion # 在下一次调用_make_layer函数的时候,self.in_channel已经x4
for _ in range(1, block_num): # 通过循环堆叠其余残差块(堆叠了剩余的block_num-1个)
layers.append(block(in_channel=self.in_channel, out_channel=channel))
return nn.Sequential(*layers) # '*'的作用是将list转换为非关键字参数传入
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
if __name__ == '__main__':
input = torch.randn(1, 1, 224, 224) # B C H W
print(input.shape)
resnet50 = ResNet50(num_classes=10)
output = resnet50.forward(input)
#print(resnet50)
#print(output)
resnet50 = resnet50.cuda()
#torchsummary观察网络结构
torchsummary.summary(resnet50, (1, 224, 224))
train_resnet50.py:训练文件。
import time import torch import torch.nn.functional as F import numpy as np from matplotlib import pyplot as plt import torchvision import resnet50 # todo: 读取常用数据集 def load_data_fashion_mnist(batch_size, resize=None, root='./Datasets/'): """Download the fashion mnist dataset and then load into memory.""" trans = [] # 是否需要resize,默认插值方法为BILINEAR if resize: trans.append(torchvision.transforms.Resize(size=resize)) trans.append(torchvision.transforms.ToTensor()) transform = torchvision.transforms.Compose(trans) # 通过Compose将trans里的多个步骤合到一起 # torchvision.datasets包含了目前流行的数据集,模型结构和图片转换工具,用这个可以快速读取数据 mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform) mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform) """ torch.utils.data.DataLoader()用来输入数据和标签,常用参数如下: dataset:表示Dataset类,决定了读取的数据 batch_size:每次处理的数据批量大小,一般为2的次方,如2,4,8,16,32,64等等 shuffle:是否随机读入数据,在训练集的时候一般随机读入,在验证集的时候一般不随机读入 num_works:多线程传入数据,设置的数字即使传入的线程数,可以加快数据的读取 drop_last:如果数据集的大小不能被批大小整除,当样本数不能被batch_size整除时,是否舍弃最后一批数据 """ num_workers = 0 train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers) test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) #print(train_iter) return train_iter, test_iter # todo: 转换自己的数据集 # 需要继承torch.utils.data.Dataset,并且重写__getitem__()和__len__()类方法,传入resize后的tensor数据 class MyDataset(torch.utils.data.Dataset): # 构造函数 def __init__(self, data_tensor, target_tensor): self.data_tensor = data_tensor self.target_tensor = target_tensor # 返回数据集大小 def __len__(self): return self.data_tensor.size(0) # 返回索引的数据与标签 def __getitem__(self, index): return self.data_tensor[index], self.target_tensor[index] # todo: 读取自己的数据集 def load_data_MyDataset(data_tensor, target_tensor, batch_size, train_or_test='train', num_workers=0): my_dataset = MyDataset(data_tensor, target_tensor) if train_or_test == 'train': iter = torch.utils.data.DataLoader(my_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) elif train_or_test == 'test': iter = torch.utils.data.DataLoader(my_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) else: print("check your param : train_or_test!") return iter # todo: 自己设定损失函数,需要继承nn.Module class cross_entropy_loss(torch.nn.Module): def __init__(self, reduction='mean'): super(cross_entropy_loss, self).__init__() self.reduction = reduction # 用来指定损失结果返回的是mean、sum def forward(self, logits, target): # logits: [N, C, H, W], target: [N, H, W] # loss = sum(-y_i * log(c_i)) if logits.dim() > 2: logits = logits.view(logits.size(0), logits.size(1), -1) # [N, C, HW] logits = logits.transpose(1, 2) # [N, HW, C] logits = logits.contiguous().view(-1, logits.size(2)) # [NHW, C] target = target.view(-1, 1) # [NHW,1] logits = F.log_softmax(logits, 1) logits = logits.gather(1, target) # [NHW, 1] loss = -1 * logits if self.reduction == 'mean': loss = loss.mean() elif self.reduction == 'sum': loss = loss.sum() return loss # todo: 计算测试集准确率 def evaluate_accuracy(data_iter, net, device=None): if device is None and isinstance(net, torch.nn.Module): # 如果没指定device就使用net的device device = list(net.parameters())[0].device acc_sum, n = 0.0, 0 with torch.no_grad(): for X, y in data_iter: # 因为FashionMNIST输入为单通道图片,需要转换为三通道 X = np.array(X) X = X.transpose((1, 0, 2, 3)) # array 转置 X = np.concatenate((X, X, X), axis=0) X = X.transpose((1, 0, 2, 3)) # array 转置回来 X = torch.tensor(X) # 将 numpy 数据格式转为 tensor if isinstance(net, torch.nn.Module): net.eval() # 评估模式, 这会关闭dropout acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item() net.train() # 改回训练模式 else: if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数 # 将is_training设置成False acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() else: acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0] return acc_sum / n # todo: 训练函数 def train(net, train_iter, test_iter, optimizer, device, num_epochs): print("training on : ", device) # 保存精度用来绘图 Train_acc, Test_acc = [0], [0] for epoch in range(num_epochs): print(f"Epoch {epoch + 1}\n----------------------") train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time() for X, y in train_iter: # 因为FashionMNIST输入为单通道图片,需要转换为三通道 X = np.array(X) X = X.transpose((1, 0, 2, 3)) # array 转置 X = np.concatenate((X, X, X), axis=0) # 维度拼接 X = X.transpose((1, 0, 2, 3)) # array 转置回来 X = torch.tensor(X) # 将 numpy 数据格式转为 tensor # 将数据移到gpu上 X = X.to(device) y = y.to(device) # 得到预测结果 y_hat = net(X) # 计算损失 l = loss(y_hat, y) optimizer.zero_grad() # 梯度清零 l.backward() # 计算反向传播 optimizer.step() # 梯度下降,参数更新 # cpu()函数作用是将数据从GPU上复制到memory上,item()返回的是一个数值而非tensor,想要返回得到tensor要用cpu().data train_l_sum += l.cpu().item() train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item() n += y.shape[0] batch_count += 1 # print("train loss : %.4f, train acc : %.3f" %(train_l_sum / batch_count, train_acc_sum / n)) # 每个epoch的结果输出到控制台并保存数据以便最后绘制精度曲线图像/损失曲线图像 test_acc = evaluate_accuracy(test_iter, net) print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start)) Train_acc.append(train_acc_sum / n) Test_acc.append(test_acc) if epoch == num_epochs-1: torch.save(net.state_dict(), "./last_model.pth") # 权重保存 # 保存精度与迭代次数图像 plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.ylim(0, 1) plt.xlim(0, 10) plt.plot(np.arange(len(Train_acc)), Train_acc, label='train_acc') plt.plot(np.arange(len(Test_acc)), Test_acc, label='test_acc') plt.savefig('./acc_result.png') print("Done!") # 使用GPU device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 网络Resnet50,FashionMNIST为10类 net = resnet50.ResNet50(num_classes=10).to(device) # 交叉熵损失函数 #loss = torch.nn.CrossEntropyLoss() loss = cross_entropy_loss() # 批量大小 batch_size = 64 # 训练和测试数据集划分 train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=96) # 学习率和迭代轮次 lr, num_epochs = 0.0001, 10 # 优化器采用Adam optimizer = torch.optim.Adam(net.parameters(), lr=lr) #开始训练 train(net, train_iter, test_iter, optimizer, device, num_epochs)
结果图: