python k-means代码实现,聚类分析代码实战

1.引入依赖 

import numpy as np
import matplotlib.pyplot as plt

# 从sklearn中直接生成聚类数据
from sklearn.datasets.samples_generator import make_blobs

 2.数据加载

x, y = make_blobs( n_samples=100, centers=6, random_state=1234, cluster_std=0.6 )

plt.figure(figsize=(6,6))
plt.scatter(x[:,0], x[:,1], c=y)
plt.show()

3.算法实现:这里大家注意cdist()的用法

# 引入scipy中的距离函数,默认欧式距离
from scipy.spatial.distance import cdist

class K_Means(object):
    # 初始化,参数 n_clusters(K)、迭代次数max_iter、初始质心 centroids
    def __init__(self, n_clusters=5, max_iter=300, centroids=[]):
        self.n_clusters = n_clusters
        self.max_iter = max_iter
        self.centroids = np.array( centroids, dtype=np.float )
        
    # 训练模型方法,k-means聚类过程,传入原始数据
    def fit(self, data):
        # 假如没有指定初始质心,就随机选取data中的点作为初始质心
        if( self.centroids.shape == (0,) ):
            # 从data中随机生成0到data行数的6个整数,作为索引值
            self.centroids = data[ np.random.randint( 0, data.shape[0], self.n_clusters ) ,: ]
            
        # 开始迭代
        for i in range(self.max_iter):
            # 1. 计算距离矩阵,得到的是一个100*6的矩阵
            distances = cdist(data, self.centroids)
            
            # 2. 对距离按有近到远排序,选取最近的质心点的类别,作为当前点的分类
            c_ind = np.argmin( distances, axis=1 )
            
            # 3. 对每一类数据进行均值计算,更新质心点坐标
            for i in range(self.n_clusters):
                # 排除掉没有出现在c_ind里的类别
                if i in c_ind:
                    # 选出所有类别是i的点,取data里面坐标的均值,更新第i个质心
                    self.centroids[i] = np.mean( data[c_ind==i], axis=0 )
    
    # 实现预测方法
    def predict(self, samples):
        # 跟上面一样,先计算距离矩阵,然后选取距离最近的那个质心的类别
        distances = cdist(samples, self.centroids)
        c_ind = np.argmin( distances, axis=1 )
        
        return c_ind

dist = np.array([[121,221,32,43],
                [121,1,12,23],
                [65,21,2,43],
                [1,221,32,43],
                [21,11,22,3],])
c_ind = np.argmin( dist, axis=1 )
print(c_ind)
x_new=x[0:5]
print(x_new)
print(c_ind==2)
print(x_new[c_ind==2])
np.mean(x_new[c_ind==2], axis=0)

4.测试绘图 

# 定义一个绘制子图函数
def plotKMeans(x, y, centroids, subplot, title):
    # 分配子图,121表示1行2列的子图中的第一个
    plt.subplot(subplot)
    plt.scatter(x[:,0], x[:,1], c='r')
    # 画出质心点
    plt.scatter(centroids[:,0], centroids[:,1], c=np.array(range(5)), s=100)
    plt.title(title)

kmeans = K_Means(max_iter=300, centroids=np.array([[2,1],[2,2],[2,3],[2,4],[2,5]]))

plt.figure(figsize=(16, 6))
plotKMeans( x, y, kmeans.centroids, 121, 'Initial State' )

# 开始聚类
kmeans.fit(x)

plotKMeans( x, y, kmeans.centroids, 122, 'Final State' )

# 预测新数据点的类别
x_new = np.array([[0,0],[10,7]])
y_pred = kmeans.predict(x_new)

print('质心:',kmeans.centroids)
print('预测:',y_pred)

# plt.scatter(x_new[:,0], x_new[:,1], s=100, c='black')

5.结果如下:

python k-means代码实现,聚类分析代码实战_第1张图片

python k-means代码实现,聚类分析代码实战_第2张图片

左侧是自己定义的质心,右侧是聚类后的质心。

声明: 代码参考b站up主《尚硅谷》

你可能感兴趣的:(聚类分析,Python数据基础,numpy基础,python,机器学习,sklearn,聚类)