形态数轴的非递进现象

(A,B)---81*30*2---(1,0)(0,1)

分类mnist的0-9的所有两两组合,固定收敛误差统计迭代次数,将迭代次数作为形态类物质的键能,并将键能作为B到A的距离,将A设为原点,将B作为形态数字作一个数轴,比如原点为0得到

A

5

7

2

4

3

9

1

6

8

0

5402.955

7822.01

8358.603

11983.15

12572.23

13346.79

23558.45

25605.5

27905.07

用同样的方法将所有的可能数轴列成表格

A

5

7

2

4

3

9

1

6

8

0

5402.955

7822.01

8358.603

11983.15

12572.23

13346.79

23558.45

25605.5

27905.07

7

4

5

6

9

2

8

0

3

1

9568.94

9577.513

10137.68

10241.39

10721.14

11792.54

16861

23558.45

35671.24

5

8

0

6

1

7

9

4

3

2

7100.643

7658.015

8358.603

9360.106

11792.54

12555.62

13772.15

19984.86

33389.61

6

5

0

4

8

7

9

2

1

3

8136.266

11703.08

12572.23

15199.52

17015.68

17331.39

19919.65

33389.61

35671.24

5

8

7

6

1

0

3

9

2

4

5689.266

6106.347

7572.704

9020.96

9577.513

11983.15

15199.52

18523.66

19984.86

6

0

4

8

9

2

7

1

3

5

5362.608

5402.955

5689.266

6116.397

6794.688

7100.643

8617.161

10137.68

11703.08

5

3

8

7

4

9

2

1

0

6

5362.608

8136.266

8626.678

8983.447

9020.96

9044.211

9360.106

10241.39

25605.5

8

4

0

5

6

1

2

3

9

7

7073.432

7572.704

7822.01

8617.161

8983.447

9568.94

12555.62

17331.39

20211.46

4

5

9

7

2

6

1

3

0

8

6106.347

6116.397

6966.322

7073.432

7658.015

8626.678

16861

17015.68

27905.07

5

8

6

1

0

2

4

3

7

9

6794.688

6966.322

9044.211

10721.14

13346.79

13772.15

18523.66

19919.65

20211.46

这个表格表明,如与9长的最像的是7, 与9长的差异最大的是5.

但更重要的是,当改变坐标原点的时候B的排序是变化的。所有的10组排序全都不一致。这与数学上的数轴是不同的,不论用0作为原点,还是用1作为原点,数字的排序是不可能改变的。因为数轴上数字有明确的递进规律。

但在这个形态的世界里,当改变坐标原点以后排序竟然改变了。如果把B看作是形态数字,如果形态与形态之间的变化也有一个明确的递进规律,那关于B的排序怎么可能随着参照改变而改变?

比如0与5的收敛迭代次数是5402,0与7的迭代次数是7822,现在要找一个形态与0分类,迭代次数是6000,那这个形态与5和7有什么关系吗?

A

5

7

2

0

5402.955

7822.01

8358.603

或者比较5,7和2三个形态,他们与0分类迭代次数依次增大,但很难说7是按照什么规律由5或者2变化而来的。或者即便能找到什么规律让5变成7,但原点变化以后这个规律还得变。

所以这个实验表明,至少对于mnist这个数据集而言,形态的变化似乎没有递进规律。

你可能感兴趣的:(用神经网络模拟原子,形态分类法,形态数字,形态数轴,非递进规律,应用化学)