- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- Python 循环神经网络(RNN)算法详解与应用案例
闲人编程
pythonpythonrnn算法循环神经网络深度学习文本生成
目录Python循环神经网络(RNN)算法详解与应用案例引言一、RNN的基本原理1.1RNN的结构1.2RNN的优势与挑战二、Python中RNN的面向对象实现2.1`RNNCell`类的实现2.2`RNNModel`类的实现2.3`Trainer`类的实现三、案例分析3.1序列预测3.1.1数据准备3.1.2模型训练3.1.3结果分析3.2文本生成3.2.1数据准备3.2.2模型训练3.2.3文
- DeepSeek 混合专家(MoE)架构技术原理剖析
计算机学长
通用大语言模型人工智能架构
DeepSeek混合专家(MoE)架构技术原理剖析在人工智能快速发展的当下,大规模语言模型不断突破创新,DeepSeek混合专家(MoE)架构脱颖而出,成为业内关注焦点。本文将深入剖析其技术原理,为大家揭开它的神秘面纱。一、MoE架构概述(一)基本概念混合专家(MixtureofExperts,MoE)架构,简单来说,就像是一个专家团队。在这个团队里,每个专家都是一个小型神经网络,各自擅长处理特定
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- matlab 延迟算子,时间序列分析-----2---时间序列预处理
这块必被安排
matlab延迟算子
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。1、描述性时序分析通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动发展过程:1)早期的频
- 【转】时间序列分析——基于R,王燕
weixin_30780221
r语言
《时间序列分析——基于R》王燕,读书笔记笔记:一、检验:1、平稳性检验:图检验方法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 时间序列分析之AR、MA、ARMA、ARIMA详解(5)
白马负金羁
机器学习之术协整cointegrationARIMA时间序列分析
在时间序列分析中最常使用的一系列模型:AR、MR、ARMA,一直到ARIMA,都源于乔治·博克斯和格威利姆·詹金斯等人的一系列工作(他们的有关成果后汇集成该领域的权威经典著作【1】)。乔治·博克斯被认为是二十世纪的一代统计学大师,他有一句广为人知的名言:所有的模型都是错误的,但有一些是有用的(“Allmodelsarewrong,butsomeareuseful”)。为了让统计模型发挥作用,深入理
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- 绘制第一和第二主周期小波系数图
赵孝正
小波分析小波变换
目录1.小波变换的结果2.提取第一和第二主周期的系数示例代码(假设`wavelet_coeffs`为小波变换结果):3.绘制系数图示例代码:4.解释图形5.其他注意事项绘制径流演变的第一和第二主周期小波系数图的步骤可以分为以下几步:1.小波变换的结果首先,需要确认已经进行过小波变换,得到的结果应该包括每个时间序列的不同尺度的系数。一般来说,这些系数包含多个周期(也叫频率分量)的信息,其中,第一主周
- Rasa:开源的机器学习框架
Indra_ran
开源机器学习人工智能linuxcentos运维
一、Rasa简介Rasa是一套用来构建基于上下文的AI小助手和聊天机器人框架。分为两个主要的模块:NLU:自然语言理解模块,实现意图识别以及槽值的提取,将用户的输入转化为结构性数据,在训练过程中,为了提高从用户信息的实体识别能力,采用了预先训练的实体提取器Pre-trainedEntityExtractors,正则表达式Regexes,同义词Synonyms等RasaCore:对话管理模块,也是一
- 小波变换系数计算实例_时间序列小波分析的操作步骤及实例分析
与何人说
小波变换系数计算实例
小波分析实例时间序列(TimeSeries)是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。河川径流是地理水文学研究中的一个重要变量,而多时间尺度是径流演化过程中存在的重要特征。所谓径流时间序列的多时间尺度是指:河川
- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 电子电气架构 --- 机器学习推动车载雷达的发展
车载诊断技术
汽车行业车辆信息安全机器学习人工智能电子电器框架网络架构汽车
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- 神经网络常见激活函数 12-Swish函数
亲持红叶
神经网络常见激活函数神经网络机器学习人工智能
Swish函数+导函数Swish函数Swish(x)=x⋅σ(βx)=x1+e−βx\begin{aligned}\rmSwish(x)&=x\cdot\sigma(\betax)\\&=\frac{x}{1+e^{-\betax}}\end{aligned}Swish(x)=x⋅σ(βx)=1+e−βxxSwish函数导数ddxSwish=(x⋅σ(βx))′=σ(βx)+x⋅(σ(βx))′∵
- DeepSeek+WPS/Office手把手教你玩转智能办公
herosunly
DeepSeek从入门到精通deepseek大模型人工智能officewps智能办公
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法Q大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- 做其他的不好吗?别写代码了(4)
chalmers_15
ai文章人工智能
AI技术在IT领域的应用确实已经成为一个趋势,这对IT从业者来说既是机遇也是挑战。我们需要客观地看待AI对IT行业的影响:AI可以自动化和优化很多IT工作,如系统监控、故障诊断、代码编写等,这可能会替代一些传统的IT工作岗位。但同时AI也会创造新的IT工作机会,如AI系统的开发、部署和维护,以及利用AI技术进行创新和优化等。未来IT从业者需要更多掌握AI相关的技能,如机器学习、数据分析等,以适应A
- 2025 机器学习方向毕业设计选题清单:开题指导与建议
Krin_IT
毕设选题指导毕业设计机器学习人工智能
目录毕设选题选题迷茫选题的重要性更多选题指导最后大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。大四的同学马上要开始毕业设计,对选题有疑问可以问学长哦(见文末)!以下整理了适合不同方向的计算机专业的毕业设计选题对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总大家好,这里是海浪学长
- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- 景联文科技:以全面数据处理服务推动AI创新与产业智能化转型
景联文科技
人工智能
数据标注公司在人工智能领域扮演着重要角色,通过提供高质量的数据标注服务,帮助企业和组织训练和优化机器学习模型。从需求分析到数据交付,每一个步骤都需要严格把控,确保数据的质量和安全性。景联文科技是一家专业的数据采集与标注公司,致力于为客户提供高质量的数据处理服务,助力企业在人工智能(AI)领域的创新与发展。数据标注的四项基本流程:数据采集、数据清洗、数据标注、数据质检。数据采集数据采集是数据处理的第
- 【Stable Diffusion部署至GNU/Linux】安装流程
星星点点洲
stablediffusion
以下是安装StableDiffusion的步骤,以Ubuntu22.04LTS为例子。显卡与计算架构介绍CUDA是NVIDIAGPU的专用并行计算架构技术层级说明CUDAToolkit提供GPU编译器(nvcc)、数学库(cuBLAS)等开发工具cuDNN深度神经网络加速库(需单独下载)GPU驱动包含CUDADriver(需与CUDAToolkit版本匹配)CUDA与NIDIA:硬件指令集绑定:N
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 高效高并发调度架构
之群害马
架构
以下是从架构层面为你提供的适合多核CPU、多GPU环境下API客户端、服务端高级调度,以实现高效并发大规模与用户交互的技术栈:通信协议gRPC:基于HTTP/2协议,具有高性能、低延迟的特点,支持二进制序列化(通常搭配Protobuf),非常适合高并发场景。它提供了流式通信和多路复用功能,可有效减少网络开销。常用于微服务之间的通信,例如机器学习模型服务与前端应用之间的交互。RSocket:是一种基
- Anaconda3 介绍和安装
gorgor在码农
#python入门基础pythonconda
介绍Anaconda是一个开源的Python和R语言发行版,专注于数据科学、机器学习和科学计算,主要面向数据科学和机器学习领域。它集成了大量常用的科学计算库(如NumPy、Pandas、Matplotlib、Scikit-learn等),并提供了强大的包管理工具Conda和环境管理功能,适合快速部署和管理复杂的开发环境。特点:预装丰富库:包含250+常用的数据科学工具包,无需手动安装。跨平台支持:
- 【机器学习】无监督学习算法之:K均值聚类
Carl_奕然
机器学习算法学习
K均值聚类1、引言2、K均值聚类2.1定义2.2原理2.3实现方式2.4算法公式2.4.1距离计算公式2.4.1中心点计算公式2.5代码示例3、总结1、引言小屌丝:鱼哥,K均值聚类我不懂,能不能给我讲一讲?小鱼:行,可以小屌丝:额…今天咋直接就答应了?小鱼:不然呢?小屌丝:有啥条件,直接说,小鱼:没有小屌丝:这咋的了,不提条件,我可不踏实小鱼:你看看你,我不提条件,你还不踏实,那你这是非让我提条件
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》