PyTorch Tutorials 摘要(3) What is torch.nn really?

文章目录

    • 前言
    • 源码

前言

  • 教程链接
  • 概述:看完之后大概能明白 nn.Module/nn.Parameter/torch.optim/Dataset/DatasetLoader的作用。
  • 内容对我来说都太容易了……就浏览一遍源码,然后写点注释吧。

源码

# 下载/获取/展示 MNIST 数据
from pathlib import Path
import requests
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
PATH.mkdir(parents=True, exist_ok=True)
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():
        content = requests.get(URL + FILENAME).content
        (PATH / FILENAME).open("wb").write(content)
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
        ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")
from matplotlib import pyplot
import numpy as np
pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)


# 将数据转换为Torch的形式
import torch
x_train, y_train, x_valid, y_valid = map(
    torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())


# 使用 torch 的 tensor 操作构建模型
import math
weights = torch.randn(784, 10) / math.sqrt(784)
weights.requires_grad_()
bias = torch.zeros(10, requires_grad=True)
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)
def model(xb):
    return log_softmax(xb @ weights + bias)


# 训练(计算损失函数、梯度、准确率)
from IPython.core.debugger import set_trace
lr = 0.5  # learning rate
epochs = 2  # how many epochs to train for
bs = 64  # batch size
xb = x_train[0:bs]  # a mini-batch from x
preds = model(xb)  # predictions
preds[0], preds.shape
print(preds[0], preds.shape)
def nll(input, target):
    return -input[range(target.shape[0]), target].mean()
loss_func = nll
def accuracy(out, yb):
    preds = torch.argmax(out, dim=1)
    return (preds == yb).float().mean()
for epoch in range(epochs):
    for i in range((n - 1) // bs + 1):
        #         set_trace()
        start_i = i * bs
        end_i = start_i + bs
        xb = x_train[start_i:end_i]
        yb = y_train[start_i:end_i]
        pred = model(xb)
        loss = loss_func(pred, yb)
        loss.backward()
        with torch.no_grad():
            weights -= weights.grad * lr
            bias -= bias.grad * lr
            weights.grad.zero_()
            bias.grad.zero_()
print(loss_func(model(xb), yb), accuracy(model(xb), yb))


# 使用 torch.nn.functional 替代最原始的 torch.tensor 的操作
# 使用 nn.Module 和 nn.Parameter 构建模型
import torch.nn.functional as F
from torch import nn
loss_func = F.cross_entropy
def model(xb):
    return xb @ weights + bias
class Mnist_Logistic(nn.Module):
    def __init__(self):
        super().__init__()
        self.weights = nn.Parameter(torch.randn(784, 10) / math.sqrt(784))
        self.bias = nn.Parameter(torch.zeros(10))
    def forward(self, xb):
        return xb @ self.weights + self.bias
print(loss_func(model(xb), yb))

# 构建训练函数
def fit():
    for epoch in range(epochs):
        for i in range((n - 1) // bs + 1):
            start_i = i * bs
            end_i = start_i + bs
            xb = x_train[start_i:end_i]
            yb = y_train[start_i:end_i]
            pred = model(xb)
            loss = loss_func(pred, yb)

            loss.backward()
            with torch.no_grad():
                for p in model.parameters():
                    p -= p.grad * lr
                model.zero_grad()
fit()


# 使用 nn 自带的函数来替代 torch.nn.functional
# nn 自带的模块(如全连接层)等定义了 nn.Module 以及 nn.Parameter
class Mnist_Logistic(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = nn.Linear(784, 10)
    def forward(self, xb):
        return self.lin(xb)
model = Mnist_Logistic()
print(loss_func(model(xb), yb))
fit()
print(loss_func(model(xb), yb))


# 使用 torch.optim 训练
# 主要就是对 nn.Parameter 进行更新
from torch import optim
def get_model():
    model = Mnist_Logistic()
    return model, optim.SGD(model.parameters(), lr=lr)
model, opt = get_model()
print(loss_func(model(xb), yb))
for epoch in range(epochs):
    for i in range((n - 1) // bs + 1):
        start_i = i * bs
        end_i = start_i + bs
        xb = x_train[start_i:end_i]
        yb = y_train[start_i:end_i]
        pred = model(xb)
        loss = loss_func(pred, yb)
        loss.backward()
        opt.step()
        opt.zero_grad()
print(loss_func(model(xb), yb))


# 使用 torch.utils.data 构建数据集
from torch.utils.data import TensorDataset
train_ds = TensorDataset(x_train, y_train)
model, opt = get_model()
for epoch in range(epochs):
    for i in range((n - 1) // bs + 1):
        xb, yb = train_ds[i * bs: i * bs + bs]
        pred = model(xb)
        loss = loss_func(pred, yb)
        loss.backward()
        opt.step()
        opt.zero_grad()
print(loss_func(model(xb), yb))


# 使用 DataLoader 来进一步处理数据集
from torch.utils.data import DataLoader
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs)
model, opt = get_model()
for epoch in range(epochs):
    for xb, yb in train_dl:
        pred = model(xb)
        loss = loss_func(pred, yb)
        loss.backward()
        opt.step()
        opt.zero_grad()
print(loss_func(model(xb), yb))


# 添加验证集
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)
valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)
model, opt = get_model()
for epoch in range(epochs):
    model.train()
    for xb, yb in train_dl:
        pred = model(xb)
        loss = loss_func(pred, yb)
        loss.backward()
        opt.step()
        opt.zero_grad()
    model.eval()
    with torch.no_grad():
        valid_loss = sum(loss_func(model(xb), yb) for xb, yb in valid_dl)
    print(epoch, valid_loss / len(valid_dl))


# 为了更好的抽象后续工作,构建 fit 与 get_data 函数
def loss_batch(model, loss_func, xb, yb, opt=None):
    loss = loss_func(model(xb), yb)
    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()
    return loss.item(), len(xb)
import numpy as np
def fit(epochs, model, loss_func, opt, train_dl, valid_dl):
    for epoch in range(epochs):
        model.train()
        for xb, yb in train_dl:
            loss_batch(model, loss_func, xb, yb, opt)
        model.eval()
        with torch.no_grad():
            losses, nums = zip(
                *[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
            )
        val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
        print(epoch, val_loss)
def get_data(train_ds, valid_ds, bs):
    return (
        DataLoader(train_ds, batch_size=bs, shuffle=True),
        DataLoader(valid_ds, batch_size=bs * 2),
    )
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(epochs, model, loss_func, opt, train_dl, valid_dl)


# 使用CNN构建模型
class Mnist_CNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1)
        self.conv2 = nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1)
        self.conv3 = nn.Conv2d(16, 10, kernel_size=3, stride=2, padding=1)
    def forward(self, xb):
        xb = xb.view(-1, 1, 28, 28)
        xb = F.relu(self.conv1(xb))
        xb = F.relu(self.conv2(xb))
        xb = F.relu(self.conv3(xb))
        xb = F.avg_pool2d(xb, 4)
        return xb.view(-1, xb.size(1))
lr = 0.1
model = Mnist_CNN()
# 构建 momentum 优化器
opt = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
fit(epochs, model, loss_func, opt, train_dl, valid_dl)


# 使用 nn.Sequential 构建模型
class Lambda(nn.Module):
    def __init__(self, func):
        super().__init__()
        self.func = func
    def forward(self, x):
        return self.func(x)
def preprocess(x):
    return x.view(-1, 1, 28, 28)
model = nn.Sequential(
    Lambda(preprocess),
    nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.Conv2d(16, 10, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.AvgPool2d(4),
    Lambda(lambda x: x.view(x.size(0), -1)),
)
opt = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
fit(epochs, model, loss_func, opt, train_dl, valid_dl)


# 对 DataLoader 进一步处理,作为一个
def preprocess(x, y):
    return x.view(-1, 1, 28, 28), y
class WrappedDataLoader:
    def __init__(self, dl, func):
        self.dl = dl
        self.func = func
    def __len__(self):
        return len(self.dl)
    def __iter__(self):
        batches = iter(self.dl)
        for b in batches:
            yield (self.func(*b))
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
train_dl = WrappedDataLoader(train_dl, preprocess)
valid_dl = WrappedDataLoader(valid_dl, preprocess)


# 使用 nn.AdaptiveAvgPool2d 替代 nn.AvgPool2d
# 不管input是多少,都可以得到想要的output
model = nn.Sequential(
    nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.Conv2d(16, 10, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.AdaptiveAvgPool2d(1),
    Lambda(lambda x: x.view(x.size(0), -1)),
)
opt = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
fit(epochs, model, loss_func, opt, train_dl, valid_dl)


# 使用GPU
print(torch.cuda.is_available())
dev = torch.device(
    "cuda") if torch.cuda.is_available() else torch.device("cpu")
def preprocess(x, y):
    return x.view(-1, 1, 28, 28).to(dev), y.to(dev)
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
train_dl = WrappedDataLoader(train_dl, preprocess)
valid_dl = WrappedDataLoader(valid_dl, preprocess)
model.to(dev)
opt = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
fit(epochs, model, loss_func, opt, train_dl, valid_dl)

你可能感兴趣的:(PyTorch,CV)