- 遥感中的反演
ximenchuixuezijin
工作农业算法金山网络io
反演在遥感中是什么意思?按楼主的需求回答:一句话--遥感的本质是反演。具体解释:遥感的本质是反演,而从反演的数学来源讲,反演研究所针对的首先是数学模型。因此,遥感反演的基础是描述遥感信号或遥感数据与地表应用之间的关系模型,也就是说,遥感模型是遥感反演研究的对象。要进行遥感反演研究,首先要解决的问题是对地表遥感像元信息的地学描述。遥感像元尺度上的地学描述是十分有意义的课题,由于地球表面是一个复杂的系
- 《DirectX 12 3D游戏开发实战》读书笔记1:数学基础
tikris
3d游戏c++矩阵线性代数
文章目录学习内容内容关于浮点类型误差解决方案参数与D3D数据结构向量类型XMVECTOR与XMFLOATn:XMVECTOR与XMFLOATn的相互转化:取得某个分量或者将某个分量转换为XMVECTOR类型:参数向量特点:表示方法:运算求模:单位化(规范化、标准化等同义):正交化:加(减)法:乘法:其他函数杂项点常向量矩阵矩阵的传参矩阵的初始化XMMATRIX和XMFLOAT4X4的转换运算矩阵的
- Python 中的 lambda 函数介绍
licy__
python开发语言
目录Python中的lambda函数介绍1.lambda函数的基本概念2.lambda函数的语法3.lambda函数的常见用法3.1简单的数学运算3.2排序和过滤排序过滤3.3映射(Map)3.4函数参数4.lambda函数的限制5.实际应用示例5.1多条件排序5.2动态排序Python中的lambda函数介绍lambda函数是Python中的一种匿名函数,也称为lambda表达式。与常规的函数定
- leetcode349. 两个数组的交集
2021dragon
leetcode
给定两个数组,编写一个函数来计算它们的交集。示例: 输入:nums1=[1,2,2,1],nums2=[2,2] 输出:[2]思路:按照我们做数学题时求交集的方法就行了,但注意在求交集前先分别对两个数组的元素进行去重。求两个数组的交集的步骤可分为以下三步:对nums1当中的元素进行去重,得到序列s1。对nums2当中的元素进行去重,得到序列s2。遍历s1,依次判断s1中的每个元素是否在s2当中出现
- 2025美赛美国大学生数学建模竞赛C题思路分析完整论文(45页)(含模型,可运行代码,运行结果)
小文数模
2025美国大学生数学建模竞赛2025美赛数学建模C数学建模pythonmatlab
2025美赛数学建模竞赛C题思路分析完整论文目录摘要一、问题重述二、问题分析三、模型假设四、模型建立与求解4.1问题14.1.1问题1思路分析4.1.2问题1模型建立4.1.3问题1样例代码(仅供参考)4.1.4问题1样例代码运行结果(仅供参考)4.2问题24.2.1问题2模型建立分析4.2.2问题2模型建立4.2.3问题2样例代码(仅供参考)4.2.4问题2样例代码运行结果(仅供参考)4.3问题
- 机器学习笔记——特征工程
好评笔记
补档机器学习人工智能论文阅读AIGCtransformer深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 变分法实例详解:从最速降线到一般泛函的Mathematica验证
繁星不语有限元学习
数学建模算法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档变分法实例详解:从最速降线到一般泛函的Mathematica验证一、最速降线问题:旋轮线的诞生1.问题背景2.数学建模3.Mathematica验证二、广义泛函极值问题:显式依赖变量的变分法1.问题描述2.数学推导3.Mathematica验证三、Mathematica工具包:`VariationalMethods`详解1.核心功能2
- 程序代码篇---Numpy&assert&迭代器
Ronin-Lotus
程序代码篇numpypython学习assert迭代器
文章目录前言第一部分:Numpy1.创建数组2.数组索引和切片3.数组形状操作4.数组运算5.数学函数6.随机数生成7.数组排序第二部分:assert基本语法1.condition2.error_message示例注意事项断言的用途第三部分:迭代器迭代器协议1.__iter__()2.__next__()迭代器的特点1.惰性求值2.一次性3.内存效率创建迭代器使用迭代器迭代器和可迭代对象可迭代对象
- Codeforces Round 276 (Div. 1) B. Maximum Value(数学+二分)【2100】
Auto114514
ACM—数学算法
题目链接https://codeforces.com/contest/484/problem/B思路a mod ba\,mod\,bamodb可以转化成a−k×ba-k\timesba−k×b,其中k=⌊ab⌋k=\left\lfloor\frac{a}{b}\right\rfloork=⌊ba⌋。我们发现k×busingnamespacestd;#defineintlonglong#define
- 「 机器人 」扑翼飞行器的偏航力矩控制:分周期参数调节机制
Robot_Starscream
「机器人学」机器人人工智能
前言通过调节分周期控制参数,扑翼飞行器能够在机翼拍动周期中引入时间不对称性,从而在左右机翼之间制造不同的空气动力,最终产生偏航方向的力矩。以下从原理、数学描述、实现过程以及实验验证等方面对该方法进行介绍。1.偏航力矩的生成原理1.1分周期控制参数定义是一个位于区间的控制参数,用于定义机翼在一个完整冲程周期内上冲(上冲程)与下冲(下冲程)的时间比例。•当时,上冲与下冲时间相等,对称性最高,偏航力矩为
- 【AI人工智能】DeepSeek R1:你需要知道的一切
大名顶顶
人工智能人工智能AIDeepSeek程序员计算机编程开源
我们将在本博客中介绍的关于DeepSeekR1的所有你需要知道的一切内容,请坚持认真读完,必有收获:DeepSeekR1简要概述主要特点与能力开源与可访问性模型架构强化学习训练变体与精简模型使用案例与应用从专有模型迁移到开源模型1.DeepSeekR1简要概述大语言模型(LLM)研究领域正在迅速发展,每一个新模型都在推动机器能力的边界。DeepSeekR1是由DeepSeek于2025年1月20日
- Day32【AI思考】-数学可视化学习的 专业工具与技巧全指南
一个一定要撑住的学习者
#AI深度思考学习方法人工智能学习
文章目录数学可视化学习的**专业工具与技巧全指南**1、回答1:**一、专业数学可视化工具库****1.交互式动态平台****~~2.编程驱动工具~~****3.三维沉浸式工具****二、进阶可视化技巧****~~1.动态参数艺术~~****2.抽象概念具象化****3.历史可视化路径****三、学习资源矩阵****1.B站宝藏UP主****~~2.系统课程推荐~~****3.实战项目库****四
- DeepSeek R1 简易指南:架构、培训、本地部署和硬件要求
前端javascript
CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读DeepSeek团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习(ReinforcementLearning)作为核心训练范式,在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。技术架构深度解析模型体系:DeepSeek-R1系列包含两大核心成员:D
- 机器学习-期末复习题
泡椒鸡jo
期末复习机器学习python
给人脸打上标签再让模型进行学习训练的方法,属于()强化学习B.半监督学习C.监督学习D.无监督学习在机器学习中,用计算机处理一副图像,维度是:上万维B.二维C.三维D.一维以下关于降维的说法不正确的是?A.降维是将训练样本从高维空间转换到低维空间B.降维不会对数据产生损伤C.通过降维可以更有效地发掘有意义的数据结构D.降维将有助于实现数据可视化将原始数据进行集成、变换、维度规约、数值规约是在以
- 【大模型应用开发 动手做AI Agent】Plan and Solve策略的提出
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】Plan-and-Solve策略的提出关键词:大模型,AIAgent,Plan-and-Solve,智能体,策略学习,强化学习,自然语言处理1.背景介绍随着人工智能技术的飞速发展,大模型(LargeLanguageModel,LLM)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了显著的突破。大模型能够理解和生成自然语言,
- 数学科学的完整课程大纲(工科自学必看)
妇男主任
笔记算法算法
数学科学的完整课程第一1.数学分析第1章数学基础第2章数系实数系复数系广义实数系第3章拓扑PARTA数列第A1章数列第A2章数列差分第A3章数列求和第A4章数项级数第A5章特殊数列PARTB函数第B1章函数第B2章微分第B3章Riemann积分第B4章函数项级数第B5章特殊函数PARTC多元函数第C1章多元函数第C2章多元函数的微分第C3章微分形式的积分第C4章含参变量的积分第C5章特殊多元函数进
- 自然语言处理-词嵌入 (Word Embeddings)
纠结哥_Shrek
自然语言处理人工智能
词嵌入(WordEmbedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。常见词嵌入方法基于矩阵分解的方法LatentSemanticAnalysis(LSA)LatentDirichletAllocation(LDA)非负矩阵分解(NMF)基于神经网络的方法Word2Vec(Google提
- 开关电源matlab仿真,用数学方法建立一种开关电源全系统的仿真模型
照月鱼yoyi
开关电源matlab仿真
引言通过数学的方法,把小功率开关电源系统表示成数学模型和非线性控制模型,建立一种开关电源全系统的仿真模型,提高了仿真速度。Matlab是一个高级的数学分析软件,Simulink是运行在Matlab环境下,用于建模、仿真和分析动态系统的软件包,它支持连续、离散及两者混合的线性及非线性系统。在Matlab5.2中推出了电力系统工具箱,该工具箱可以与Simulink配合使用,能够更方便地对电力电子系统进
- 「DeepSeek接班OpenAI」,最新开源的R1推理模型,让AI圈爆了
人工智能学家
人工智能
来源:前沿科技分享圈近日,AI领域迎来了一次重大突破,DeepSeek正式推出了其最新研发的开源推理模型——DeepSeek-R1。这一模型在数学、代码和自然语言推理等关键任务上的表现,已经能够与OpenAI的o1正式版相媲美,引发了AI研究者和从业者的广泛关注。多阶段训练:创新的模型架构DeepSeek-R1的训练方式采用了多阶段循环的策略,具体包括基础训练、强化学习(RL)、微调等多个阶段。这
- DeepSeek R1:AI领域的新标杆
XianxinMao
人工智能
标题:DeepSeekR1:AI领域的新标杆文章信息摘要:DeepSeek的R1模型在性能上与OpenAI的o1模型相当,甚至在某些方面更具优势,尤其在成本控制上表现出色。R1模型通过开源策略展示了其在AI领域的开放态度,推动了技术的广泛发展。此外,R1-Zero模型通过强化学习和测试时计算实现了强大的推理能力,无需监督微调数据,标志着中国在AI领域的快速崛起,挑战美国的主导地位。AI模型在推理能
- 青少年编程与数学 02-008 Pyhon语言编程基础 06课题、字符串
明月看潮生
编程与数学第02阶段青少年编程python编程语言编程与数学
青少年编程与数学02-008Pyhon语言编程基础06课题、字符串一、字符串特征操作示例二、创建字符串使用单引号或双引号使用三引号字符串字面量字符串内容转义字符三、字符串运算符1.字符串连接(加法运算符`+`)2.字符串重复(乘法运算符`*`)3.字符串格式化(百分号运算符`%`)4.f-string(格式化字符串字面量)5.字符串比较6.in和notin运算符字符串方法四、函数(方法以外)1.`
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- 实现AVL树
我可能是个假开发
数据结构算法
一、概述1.来源AVL树是一种自平衡二叉搜索树,由托尔·哈斯特罗姆在1960年提出并在1962年发表。它的名字来源于发明者的名字:Adelson-Velsky和Landis,他们是苏联数学家,于1962年发表了一篇论文,详细介绍了AVL树的概念和性质。AVL树是用于存储有序数据的一种重要数据结构,它是二叉搜索树的一种改进和扩展。它不仅能够提高搜索、插入和删除操作的效率,而且还能够确保树的深度始终保
- Hindsight Experience Replay (HER) 算法
C7211BA
算法
HindsightExperienceReplay(HER)算法简介HindsightExperienceReplay(HER)是一种强化学习中的技术,旨在解决稀疏奖励问题,特别适用于目标导向的任务(例如机器人控制、物体抓取等)。它的基本思想是:即使在一个回合中任务失败,我们仍然可以从中获得有效的学习经验,通过“事后推断”(hindsight)来重构目标和奖励。关键概念目标导向任务:这些任务有明确
- A3C(Asynchronous Advantage Actor-Critic)算法
C7211BA
算法
A3C(AsynchronousAdvantageActor-Critic)是一种强化学习算法,它结合了Actor-Critic方法和异步更新(AsynchronousUpdates)技术。A3C是由GoogleDeepMind提出的,并在许多强化学习任务中表现出色,特别是那些复杂的、需要并行处理的环境。A3C主要解决了传统深度强化学习中的一些问题,如训练稳定性和数据效率问题。A3C算法的关键点A
- 2025美赛数学建模c题思路+模型+代码分享!非机构不卖课(12:51已更新完善Q1模型的代码)
夜信431
机器学习人工智能数学建模大数据python
2025MCMC题思路分析中文版题目翻译在这里先不放了,重点说一下我和队友讨论出来的一个简单思路。题目背景信息排名、金牌、奖牌数量:奥运会奖牌榜的核心指标。奖牌预测方法:强调基于参赛运动员名单而非历史奖牌数据进行预测。数据限制:模型和分析必须仅使用提供的五个数据文件,所以好好想想到时候伟大教练应该怎么考虑(data_dictionary.csv,summerOly_athletes.csv,sum
- 备战美赛!2025美赛数学建模C题模拟预测!用于大家练手模拟!
灿灿数模
数学建模
完整的思路代码模型见文末2025美赛数学建模C题模拟题:城市交通拥堵指数的预测与管理策略背景随着全球城市化进程的加快,交通拥堵问题成为城市发展的重要挑战之一。交通拥堵不仅影响居民出行效率,还增加了能源消耗和碳排放。近年来,各大城市开始尝试通过实时数据监控和人工智能技术对交通拥堵进行预测和管理。然而,由于城市交通系统的复杂性,现有方法在实际应用中仍面临诸多挑战。任务作为一名数据分析专家,你的任务是基
- python 求导实现_python – NumPy中的Softmax导数接近0(实现)
非凡运营笔记
python求导实现
这是如何以更加矢量化的numpy方式计算softmax函数的导数的答案.然而,偏导数逼近零的事实可能不是数学问题,并且只是学习率或复杂深度神经网络的已知死亡权重问题.像ReLU这样的图层有助于防止后一问题.首先,我使用了以下信号(仅复制您的上一个条目),使其成为4个样本x3个特征,因此更容易看到尺寸发生了什么.>>>signal=[[0.3394572666491664,0.30890680539
- 2025数学建模美赛C题【Models for Olympic Medal Tables】第一问
步入烟尘
2025数学建模美赛C题2025数学建模美赛数学建模奥运会历史奖牌
本文为个人解题笔记,仅供参考学习。本文C题的第一问。其他问题均在本专栏内,订阅一次,全部可见。文章目录问题1解题全流程解题完整过程:建立预测奥运会奖牌数的数学模型1.数据分析与清理1.1数据来源与结构1.2数据清理2.探索性数据分析(EDA)2.1国家奖牌分布趋势2.2奖牌与赛事数量的关系2.3主办国优势分析3.模型建立3.1奖牌数预测模型3.2奖牌首次获得预测模型3.3奖牌分布与赛事类型关联模型
- 2025年美国大学生数学建模竞赛C题思路(对每题分析)
FFMXjy
数学建模学习-传统算法机器学习深度学习系列课程数学建模美赛美国大学生数学建模
2025年美国大学生数学建模竞赛C题思路开发奖牌数预测模型1.目标:建立一个模型来预测每个国家的奖牌数,特别是金牌和总奖牌数。步骤:2.使用提供的summerOly_athletes.csv和summerOly_medal_counts.csv数据。3.清理数据,处理缺失值和异常值。4.提取有用的特征,如国家、年份、项目、奖牌类型等。5.选择适当的机器学习算法,如线性回归、随机森林或梯度提升树。6
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL