The Model Maker library uses transfer learning to simplify the process of training a TensorFlow Lite model using a custom dataset. Retraining a TensorFlow Lite model with your own custom dataset reduces the amount of training data required and will shorten the training time.
解读: 针对模型训练,目前比较主流的方式都是基于迁移学习来做的
You’ll use the publicly available Salads dataset, which was created from the Open Images Dataset V4
本次的目标检测,用到的数据集来自 Open Images Dataset V4
The Salads dataset is available at: gs://cloud-ml-data/img/openimage/csv/salads_ml_use.csv
It contains 175 images for training, 25 images for validation, and 25 images for testing. The dataset has five classes: Salad, Seafood, Tomato, Baked goods, Cheese
本次用到的数据集比较小,训练集有 175张图片,验证集有 25张图片,测试集有 25张图片
This tutorial uses the EfficientDet-Lite0 model. EfficientDet-Lite[0-4] are a family of mobile/IoT-friendly object detection models derived from the EfficientDet architecture.
本教程用到的模型是基于 EfficientDet 架构的
Model architecture | Size(MB)* | Latency(ms)** | Average Precision*** |
---|---|---|---|
EfficientDet-Lite0 | 4.4 | 37 | 25.69% |
EfficientDet-Lite1 | 5.8 | 49 | 30.55% |
EfficientDet-Lite2 | 7.2 | 69 | 33.97% |
EfficientDet-Lite3 | 11.4 | 116 | 37.70% |
EfficientDet-Lite4 | 19.9 | 260 | 41.96% |
第一步先下载 csv 文件
gsutil cp gs://cloud-ml-data/img/openimage/csv/salads_ml_use.csv ./
接下来,我们需要下载下图框出来的这一列的图片到本地
下载存储在 GCS 中的图片
import os
import pandas as pd
csv = pd.read_csv('./salads_ml_use.csv', header=None)
csv = csv.drop_duplicates(subset=[1])
for i in range(len(csv)):
print(csv.iat[i, 1])
url = csv.iat[i, 1]
command_line = 'gsutil cp ' + str(url) + ' ./imgs'
print(command_line)
os.system(command_line)
下载完之后,我们需要替换上图框出来的这一列图片的 Path
import pandas as pd
csv = pd.read_csv('./salads_ml_use.csv', header=None)
for i in range(len(csv)):
replace_path = csv.iat[i, 1].split('/')
new_path = 'imgs/' + replace_path[-1]
csv.iloc[i, 1] = new_path
csv.to_csv('./dataset.csv', header=None, index=None)
Several factors can affect the model accuracy when exporting to TFLite:
print(model.evaluate(test_data))
输出如下所示
1/1 [==============================] - 5s 5s/step
{'AP': 0.22399962, 'AP50': 0.38580748, 'AP75': 0.24183373, 'APs': -1.0, 'APm': 0.5527414, 'APl': 0.2217945, 'ARmax1': 0.18037322, 'ARmax10': 0.33707887, 'ARmax100': 0.3844084, 'ARs': -1.0, 'ARm': 0.69166666, 'ARl': 0.3815808, 'AP_/Baked Goods': 0.052346602, 'AP_/Salad': 0.5813057, 'AP_/Cheese': 0.1882949, 'AP_/Seafood': 0.035442438, 'AP_/Tomato': 0.26260847}
print(model.evaluate_tflite('./tfliteObj/model.tflite', test_data))
输出如下所示
25/25 [==============================] - 44s 2s/step
{'AP': 0.19460419, 'AP50': 0.3306833, 'AP75': 0.2048249, 'APs': -1.0, 'APm': 0.5628042, 'APl': 0.19179066, 'ARmax1': 0.13540329, 'ARmax10': 0.26641822, 'ARmax100': 0.2794697, 'ARs': -1.0, 'ARm': 0.675, 'ARl': 0.27492526, 'AP_/Baked Goods': 0.0, 'AP_/Salad': 0.52857256, 'AP_/Cheese': 0.15999624, 'AP_/Seafood': 0.014851485, 'AP_/Tomato': 0.26960063}
量化后模型大小 4.4MB
对比量化前和量化后的输出结果,我们发现量化有一定的精度损失,而且量化之后用的是 global NMS,量化前用的是 per-class non-max supression (NMS)
推断速度变慢的原因是后者用的是 CPU,前者用的是 GPU
find the object_detector_spec.py in anaconda3/envs/tf2.5/lib/python3.6/site-packages/tensorflow_examples/lite/model_maker/core/task/model_spec, then change nms_boxes, nms_classes, nms_scores, _ = lite_runner.run(images) ----> nms_scores, nms_boxes, nms_count, nms_classes = lite_runner.run(images), should address the error in tf2.6-gpu
You can test the trained TFLite model using images from the internet.
完整代码如下所示:
import numpy as np
import os
from tflite_model_maker.config import ExportFormat
from tflite_model_maker import model_spec
from tflite_model_maker import object_detector
import tensorflow as tf
assert tf.__version__.startswith('2')
tf.get_logger().setLevel('ERROR')
from absl import logging
logging.set_verbosity(logging.ERROR)
spec = model_spec.get('efficientdet_lite0')
train_data, validation_data, test_data = object_detector.DataLoader.from_csv(
'./dataset.csv')
model = object_detector.create(train_data, model_spec=spec, batch_size=8, train_whole_model=True, epochs=50,
validation_data=validation_data)
print(model.evaluate(test_data))
model.export(export_dir='./tfliteObj')
print(model.evaluate_tflite('./tfliteObj/model.tflite', test_data))
import cv2
from PIL import Image
model_path = './tfliteObj/model.tflite'
# Load the labels into a list
classes = ['???'] * model.model_spec.config.num_classes
label_map = model.model_spec.config.label_map
print(label_map)
for label_id, label_name in label_map.as_dict().items():
classes[label_id - 1] = label_name
# Define a list of colors for visualization
COLORS = np.random.randint(0, 255, size=(len(classes), 3), dtype=np.uint8)
def preprocess_image(image_path, input_size):
"""Preprocess the input image to feed to the TFLite model"""
img = tf.io.read_file(image_path)
img = tf.io.decode_image(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.uint8)
original_image = img
resized_img = tf.image.resize(img, input_size)
resized_img = resized_img[tf.newaxis, :]
return resized_img, original_image
def set_input_tensor(interpreter, image):
"""Set the input tensor."""
tensor_index = interpreter.get_input_details()[0]['index']
input_tensor = interpreter.tensor(tensor_index)()[0]
input_tensor[:, :] = image
def get_output_tensor(interpreter, index):
"""Returns the output tensor at the given index."""
# print(interpreter.get_output_details())
output_details = interpreter.get_output_details()[index]
# print(output_details)
tensor = np.squeeze(interpreter.get_tensor(output_details['index']))
return tensor
def detect_objects(interpreter, image, threshold):
"""Returns a list of detection results, each a dictionary of object info."""
# Feed the input image to the model
set_input_tensor(interpreter, image)
interpreter.invoke()
# Get all outputs from the model
scores = get_output_tensor(interpreter, 0)
# print(scores)
boxes = get_output_tensor(interpreter, 1)
# print(boxes)
count = int(get_output_tensor(interpreter, 2))
# print(count)
classes = get_output_tensor(interpreter, 3)
# print(classes)
results = []
for i in range(count):
if scores[i] >= threshold:
result = {
'bounding_box': boxes[i],
'class_id': classes[i],
'score': scores[i]
}
results.append(result)
return results
def run_odt_and_draw_results(image_path, interpreter, threshold=0.5):
"""Run object detection on the input image and draw the detection results"""
# Load the input shape required by the model
_, input_height, input_width, _ = interpreter.get_input_details()[0]['shape']
# Load the input image and preprocess it
preprocessed_image, original_image = preprocess_image(
image_path,
(input_height, input_width)
)
# Run object detection on the input image
results = detect_objects(interpreter, preprocessed_image, threshold=threshold)
# Plot the detection results on the input image
original_image_np = original_image.numpy().astype(np.uint8)
for obj in results:
# Convert the object bounding box from relative coordinates to absolute
# coordinates based on the original image resolution
ymin, xmin, ymax, xmax = obj['bounding_box']
xmin = int(xmin * original_image_np.shape[1])
xmax = int(xmax * original_image_np.shape[1])
ymin = int(ymin * original_image_np.shape[0])
ymax = int(ymax * original_image_np.shape[0])
# Find the class index of the current object
class_id = int(obj['class_id'])
# Draw the bounding box and label on the image
color = [int(c) for c in COLORS[class_id]]
cv2.rectangle(original_image_np, (xmin, ymin), (xmax, ymax), color, 2)
# Make adjustments to make the label visible for all objects
y = ymin - 15 if ymin - 15 > 15 else ymin + 15
label = "{}: {:.0f}%".format(classes[class_id], obj['score'] * 100)
cv2.putText(original_image_np, label, (xmin, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Return the final image
original_uint8 = original_image_np.astype(np.uint8)
# cv2.imshow('My Image', original_uint8)
return original_uint8
DETECTION_THRESHOLD = 0.5
TEMP_FILE = './3916261642_0a504acd60_o.jpg'
# im = Image.open(TEMP_FILE)
# im.thumbnail((512, 512), Image.ANTIALIAS)
# im.save(TEMP_FILE, 'PNG')
# Load the TFLite model
interpreter = tf.lite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
# Run inference and draw detection result on the local copy of the original file
detection_result_image = run_odt_and_draw_results(
TEMP_FILE,
interpreter,
threshold=DETECTION_THRESHOLD
)
# Show the detection result
Image.fromarray(detection_result_image).save('result4.png')
The Model Maker library also supports the object_detector.DataLoader.from_pascal_voc method to load data with PASCAL VOC format. makesense.ai and LabelImg are the tools that can annotate the image and save annotations as XML files in PASCAL VOC data format:
As for EfficientDet-Lite models, full integer quantization is used to quantize the model by default
更换成 efficientdet_lite4 之后
7/7 [==============================] - 7s 556ms/step
{'AP': 0.25010574, 'AP50': 0.3997039, 'AP75': 0.26090986, 'APs': -1.0, 'APm': 0.39775428, 'APl': 0.2529601, 'ARmax1': 0.18140708, 'ARmax10': 0.3773429, 'ARmax100': 0.42601383, 'ARs': -1.0, 'ARm': 0.65, 'ARl': 0.42257527, 'AP_/Baked Goods': 0.06134321, 'AP_/Salad': 0.6299854, 'AP_/Cheese': 0.3231003, 'AP_/Seafood': 0.022308316, 'AP_/Tomato': 0.2137914}
量化后的模型表现如下所示: 模型大小为 20.6MB
25/25 [==============================] - 886s 35s/step
{'AP': 0.2262094, 'AP50': 0.36880234, 'AP75': 0.23866965, 'APs': -1.0, 'APm': 0.45891207, 'APl': 0.22751573, 'ARmax1': 0.15214683, 'ARmax10': 0.30475155, 'ARmax100': 0.31568292, 'ARs': -1.0, 'ARm': 0.7083333, 'ARl': 0.31004748, 'AP_/Baked Goods': 0.043140028, 'AP_/Salad': 0.5725568, 'AP_/Cheese': 0.29958257, 'AP_/Seafood': 0.014851485, 'AP_/Tomato': 0.20091617}