《K8S进阶》 (下)

文章目录

    • 第11章:Pod数据持久化
      • 11.1 emptyDir
      • 11.2 hostPath
      • 11.3 网络NFS存储
      • 11.4 PV&PVC
      • 11.5 PV静态供给
      • 11.6 PV动态供给
      • 11.7 PV动态供给实践(NFS)
    • 第12章:再谈有状态应用部署
        • 前言
      • 1.StatefulSet控制器概述
      • 2.稳定的网络ID
      • 3.稳定的存储
      • 小结
    • 第13章:Kubernetes 鉴权框架与用户权限分配
      • 1.Kubernetes的安全框架
      • 2.传输安全,认证,授权,准入控制
      • 3.使用RBAC授权

第11章:Pod数据持久化

参考文档:https://kubernetes.io/docs/concepts/storage/volumes/

  • Kubernetes中的Volume提供了在容器中挂载外部存储的能力

  • Pod需要设置卷来源(spec.volume)和挂载点(spec.containers.volumeMounts)两个信息后才可以使用相应的Volume

11.1 emptyDir

创建一个空卷,挂载到Pod中的容器。Pod删除该卷也会被删除。

应用场景:Pod中容器之间数据共享

apiVersion: v1
kind: Pod
metadata:
  name: my-pod "pod名称"
spec: "pod资源规格"
  containers: "容器规格,下面是一个pod创建两个容器"
  - name: write "write容器"
    image: centos
    command: ["bash","-c","for i in {1..100};do echo $i >> /data/hello;sleep 1;done"] "写入/data/hello文件"
    volumeMounts:
      - name: data "挂载的数据卷名称"
        mountPath: /data "挂载统一个目录/data"

  - name: read "read容器"
    image: centos
    command: ["bash","-c","tail -f /data/hello"] "读/data/hello"
    volumeMounts:
      - name: data "挂载的数据卷名称"
        mountPath: /data "挂载统一个目录/data"
  
  volumes: "提供源数据卷"
  - name: data "元数据卷名称data"
    emptyDir: {} "空卷"
[root@k8s-master ~]# kubectl delete pod my-pod

[root@k8s-master ~]# vim emptyDir.yaml
apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: write
    image: centos
    command: ["bash","-c","for i in {1..100};do echo $i >> /data/hello;sleep 1;done"]
    volumeMounts:
      - name: data
        mountPath: /data

  - name: read
    image: centos
    command: ["bash","-c","tail -f /data/hello"]
    volumeMounts:
      - name: data
        mountPath: /data

  volumes:
  - name: data
    emptyDir: {}
[root@k8s-master ~]# kubectl apply -f  emptyDir.yaml 
[root@k8s-master ~]# kubectl logs my-pod -c read
[root@k8s-master ~]# kubectl logs my-pod -c write
[root@k8s-master ~]# kubectl  get pods -o wide
NAME                     READY   STATUS             RESTARTS   AGE   IP             NODE        NOMINATED NODE   READINESS GATES
my-pod                   1/2     CrashLoopBackOff   4          12m   10.244.0.199   k8s-node2              
//到node2查看
[root@k8s-node2 data]# docker ps 
CONTAINER ID        IMAGE                                  COMMAND                  CREATED             STATUS              PORTS               NAMES
a25621c72944        centos                                 "bash -c 'for i in {…"   10 seconds ago      Up 10 seconds                           k8s_write_my-pod_default_c7e0bb20-2a7a-4863-a128-915d62dcc56e_5
//podid 为pod_default_c7e0bb20-2a7a-4863-a128-915d62dcc56e_5 根据pod id 在宿主机找存放的数据
[root@k8s-node2 data]# ls
hello
[root@k8s-node2 data]# pwd
/var/lib/kubelet/pods/c7e0bb20-2a7a-4863-a128-915d62dcc56e/volumes/kubernetes.io~empty-dir/data

11.2 hostPath

https://kubernetes.io/zh/docs/concepts/storage/volumes/#hostpath

挂载Node文件系统上文件或者目录到Pod中的容器。

应用场景:Pod中容器需要访问宿主机文件

emptyDir == volume (类似于docker 的volume)
hostPath == bindmount (类似于docker的挂载数据卷) 挂载到容器 给日志采集agent、监控agent /proc

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 36000
    volumeMounts:  "数据卷挂载到容器"
    - name: data "挂载的数据卷名称"
      mountPath: /data "挂载到容器位置"
  volumes: "卷的来源"
  - name: data "卷的来源名称"
    hostPath: "指定卷的类型hostpath"
      path: /tmp "提供宿主机的/tmp目录供容器挂载"
      type: Directory "类型为目录"

验证:进入Pod中的/data目录内容与当前运行Pod的节点内容一样。

示例:

[root@k8s-master ~]# vim hostpath.yaml
apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 36000
    volumeMounts:
    - name: data
      mountPath: /data
  volumes:
  - name: data
    hostPath:
      path: /tmp
      type: Directory
[root@k8s-master ~]# kubectl apply -f  hostpath.yaml 
pod/my-pod created
[root@k8s-master ~]# kubectl exec -it my-pod sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
/ # ls /data/
a.txt
k8s
systemd-private-7127d5a57d1a41af850a0bb25658b596-bolt.service-KGlreQ
systemd-private-7127d5a57d1a41af850a0bb25658b596-chronyd.service-DDWWhp
systemd-private-7127d5a57d1a41af850a0bb25658b596-colord.service-6UxhsE
systemd-private-7127d5a57d1a41af850a0bb25658b596-cups.service-fOkfOB
systemd-private-7127d5a57d1a41af850a0bb25658b596-rtkit-daemon.service-JrKyBL
vmware-root_8491-1713771788
/ # exit
[root@k8s-master ~]# kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP             NODE        NOMINATED NODE   READINESS GATES
my-pod                   1/1     Running   0          79s   10.244.1.37    k8s-node1              
//取node1查看
[root@k8s-node1 ~]# cd /tmp
[root@k8s-node1 tmp]# ls
a.txt
k8s
systemd-private-7127d5a57d1a41af850a0bb25658b596-bolt.service-KGlreQ
systemd-private-7127d5a57d1a41af850a0bb25658b596-chronyd.service-DDWWhp
systemd-private-7127d5a57d1a41af850a0bb25658b596-colord.service-6UxhsE
systemd-private-7127d5a57d1a41af850a0bb25658b596-cups.service-fOkfOB
systemd-private-7127d5a57d1a41af850a0bb25658b596-rtkit-daemon.service-JrKyBL
vmware-root_8491-1713771788
//容器挂载的宿主机/tmp目录,数据报错一致
//容器创建test文件,测试持久化存储
[root@k8s-master ~]# kubectl exec -it my-pod sh
/ # cd /data
/data # echo 123 > test.txt
/data # ls
a.txt
k8s
systemd-private-7127d5a57d1a41af850a0bb25658b596-bolt.service-KGlreQ
systemd-private-7127d5a57d1a41af850a0bb25658b596-chronyd.service-DDWWhp
systemd-private-7127d5a57d1a41af850a0bb25658b596-colord.service-6UxhsE
systemd-private-7127d5a57d1a41af850a0bb25658b596-cups.service-fOkfOB
systemd-private-7127d5a57d1a41af850a0bb25658b596-rtkit-daemon.service-JrKyBL
test.txt
vmware-root_8491-1713771788
//到节点/tmp路径检查
[root@k8s-node1 tmp]# ls
a.txt
k8s
systemd-private-7127d5a57d1a41af850a0bb25658b596-bolt.service-KGlreQ
systemd-private-7127d5a57d1a41af850a0bb25658b596-chronyd.service-DDWWhp
systemd-private-7127d5a57d1a41af850a0bb25658b596-colord.service-6UxhsE
systemd-private-7127d5a57d1a41af850a0bb25658b596-cups.service-fOkfOB
systemd-private-7127d5a57d1a41af850a0bb25658b596-rtkit-daemon.service-JrKyBL
test.txt
vmware-root_8491-1713771788
//容器创建的数据保存到node节点的/tmp

以上empotydir 和 hostpath 很单一,解决不了数据夸node节点的问题,下文网络存储解决

k8s调度单元是pod ,一个pod的多个容器会被一起分配到一个节点,不会分散

11.3 网络NFS存储

apiVersion: apps/v1beta1 "版本"
kind: Deployment "pod类型"
metadata: "元信息"
  name: nginx-deployment "pod名称"
spec: "资源规格"
  replicas: 3 "3副本"
  template: "模板"
    metadata:
      labels:
        app: nginx
    spec: "容器规格"
      containers:
      - name: nginx
        image: nginx
        volumeMounts: "挂载数据卷"
        - name: wwwroot "挂载的数据卷名称"
          mountPath: /usr/share/nginx/html "容器挂载点"
        ports: "容器端口"
        - containerPort: 80
      volumes: "源数据卷"
      - name: wwwroot "源数据卷名称"
        nfs: "数据卷类型"
          server: 192.168.0.200 "挂载节点"
          path: /data/nfs "挂载出去的目录"

示例:

//把192.168.100.200作为nfs存储节点
//master节点和nfs节点安装nfs
yum install nfs-utils -y
//nfs存储节点
[root@localhost ~]# vim /etc/exports
/ifs/kubernetes *(rw,no_root_squash) "读写.不降权"
[root@localhost ~]# mkdir  -p /ifs/kubernetes
[root@localhost ~]# systemctl start nfs
[root@localhost ~]# systemctl enable nfs
//master节点
[root@k8s-master ~]# systemctl start nfs
[root@k8s-master ~]# systemctl senable nfs
[root@k8s-master ~]# kubectl create deploy web --image=nginx  --dry-run -o yaml > nfs.yaml "创建yaml模板"
[root@k8s-master ~]# vim nfs.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: web
  name: web
spec:
  replicas: 3
  selector:
    matchLabels:
      app: web
  strategy: {}
  template:
    metadata:
      labels:
        app: web
    spec:
      containers:
      - image: nginx
        name: nginx
        resources: {}
        volumeMounts:
        - name: data
          mountPath: /usr/share/nginx/html
      volumes:
      - name: data
        nfs:
          server: 192.168.100.200
          path: /ifs/kubernetes

[root@k8s-master ~]# df -Th
192.168.100.200:/ifs/kubernetes nfs4      190G  6.1G  184G    4% /mnt
[root@k8s-master ~]# kubectl apply -f nfs.yaml 
deployment.apps/web created

//nfs存储创建首页
[root@localhost ~]# cd /ifs/kubernetes/
[root@localhost kubernetes]# echo "123" >index.html
[root@localhost kubernetes]# ls
index.html
//pod查看
[root@k8s-master ~]# kubectl get pods -o wide 
NAME                  READY   STATUS    RESTARTS   AGE     IP             NODE        NOMINATED NODE   READINESS GATES
my-pod                1/1     Running   0          3h17m   10.244.1.37    k8s-node1              
web-947cfd45d-jl2pk   1/1     Running   0          10m     10.244.1.38    k8s-node1              
web-947cfd45d-vq5n6   1/1     Running   0          11m     10.244.0.200   k8s-node2              
web-947cfd45d-wfpbl   1/1     Running   0          10m     10.244.0.201   k8s-node2              
//进node1
[root@k8s-master ~]# kubectl exec -it web-947cfd45d-jl2pk bash
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
root@web-947cfd45d-jl2pk:/# cd /usr/share/nginx/html/
root@web-947cfd45d-jl2pk:/usr/share/nginx/html# ls
index.html
//能够看到测试首页,说明数据存储在nfs上
//进node2查看
[root@k8s-master ~]# kubectl exec -it web-947cfd45d-vq5n6 bash
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
root@web-947cfd45d-vq5n6:/# cd /usr/share/nginx/html
root@web-947cfd45d-vq5n6:/usr/share/nginx/html# ls
index.html
root@web-947cfd45d-vq5n6:/usr/share/nginx/html# cat index.html 
123

//增加副本
[root@k8s-master ~]# kubectl scale deploy web --replicas=4
deployment.apps/web scaled
[root@k8s-master ~]# kubectl get pods -o wide 
NAME                  READY   STATUS    RESTARTS   AGE     IP             NODE        NOMINATED NODE   READINESS GATES
my-pod                1/1     Running   0          3h21m   10.244.1.37    k8s-node1              
web-947cfd45d-2gk2z   1/1     Running   0          4s      10.244.1.39    k8s-node1              
web-947cfd45d-jl2pk   1/1     Running   0          14m     10.244.1.38    k8s-node1              
web-947cfd45d-vq5n6   1/1     Running   0          15m     10.244.0.200   k8s-node2              
web-947cfd45d-wfpbl   1/1     Running   0          14m     10.244.0.201   k8s-node2              
//查看新创建的副本
[root@k8s-master ~]# kubectl exec -it web-947cfd45d-2gk2z bash
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
root@web-947cfd45d-2gk2z:/# cat /usr/share/nginx/html/index.html 
123
//这个实验说明NFS网络卷持久化存储,几个节点间数据同步

11.4 PV&PVC

**PersistentVolume(PV):**对存储资源创建和使用的抽象,使得存储作为集群中的资源管理

持久卷提供者 (类似于制作硬盘)

PV供给分为:

  • 静态

  • 动态

**PersistentVolumeClaim(PVC):**让用户不需要关心具体的Volume实现细节

持久卷需求者 (类似于买硬盘来用)

《K8S进阶》 (下)_第1张图片

//容器使用数据卷
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: web
  name: web
spec:
  replicas: 3
  selector:
    matchLabels:
      app: web
  strategy: {}
  template:
    metadata:
      labels:
        app: web
    spec:
      containers:
      - image: nginx
        name: nginx
        resources: {}
        volumeMounts: "容器卷挂载信息"
        - name: data
          mountPath: /usr/share/nginx/html "容器挂载点"
        ports:
        - containerPort: 80
      volumes: "容器数据卷"
      - name: data
        persistentVolumeClaim: "用户存储请求"
          claimName: my-pvc "请求名称my-pvc,要与pvc的需求模板名称一致"
//这里不用写数据卷源信息这点和网络卷不一样        
//pvc卷需求模板
apiVersion: v1
kind: PersistentVolumeClaim "pod类型pvc"
metadata:
  name: my-pvc "要与上面请求名称一致"
spec:
  accessModes: "请求模式"
    - ReadWriteMany "读写执行"
  resources: "资源信息"
    requests: "请求容量大小"
      storage: 5Gi "大小5G"
      
  1. 加入说请求6G 而Pv只有5G和10G 根据就近选择合适pv,不一定相等
    容量并不是必须对应(pv!=pvc),根据就近选择合适pv

  2. 如果pvc申请的是5G,那么它也有可能使用的容量超过5G,这个限不限制也取决于你的后端存储支不支持限制

  3. 扩容:1.11版本支持动态扩容(k8s层面),具体还要根据后端存储支持

  4. 现在用的最多的是ceph存储

//pv数据卷定义
apiVersion: v1
kind: PersistentVolume "pod类型pv"
metadata:
  name: pv00001
spec:
  capacity:
    storage: 5Gi
  accessModes:
    - ReadWriteMany
  nfs:
    path: /ifs/kubernetes/pv00001
    server: 192.168.100.200

示例:

//创建pv提供者卷,创建三块5G的卷
[root@k8s-master ~]# vim pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv00001
spec:
  capacity:
    storage: 5Gi
  accessModes:
    - ReadWriteMany
  nfs:
    path: /ifs/kubernetes/pv00001
    server: 192.168.100.200
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv00002
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteMany
  nfs:
    path: /ifs/kubernetes/pv00002
    server: 192.168.100.200
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv00003
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteMany
  nfs:
    path: /ifs/kubernetes/pv00003
    server: 192.168.100.200
//NFS创建存储目录
[root@localhost kubernetes]# mkdir pv00001
[root@localhost kubernetes]# mkdir pv00002
[root@localhost kubernetes]# mkdir pv00003
[root@localhost kubernetes]# ls
index.html  pv00001  pv00002  pv00003
//master创建
[root@k8s-master ~]# kubectl apply -f pv.yaml 
persistentvolume/pv00001 created
persistentvolume/pv00002 created
persistentvolume/pv00003 created
[root@k8s-master ~]# kubectl get pv
NAME      CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM   STORAGECLASS   REASON   AGE
pv00001   5Gi        RWX            Retain           Available                                   2m
pv00002   10Gi       RWX            Retain           Available                                   2m
pv00003   10Gi       RWX            Retain           Available                                   2m
"avaliable为可用状态,说明还没被使用"
//pvc使用pv卷
[root@k8s-master ~]# vim pvc.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: web
  name: web
spec:
  replicas: 3
  selector:
    matchLabels:
      app: web
  strategy: {}
  template:
    metadata:
      labels:
        app: web
    spec:
      containers:
      - image: nginx
        name: nginx
        resources: {}
        volumeMounts:
        - name: data
          mountPath: /usr/share/nginx/html
        ports:
        - containerPort: 80
      volumes:
      - name: data
        persistentVolumeClaim:
          claimName: my-pvc
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 5Gi


[root@k8s-master ~]# kubectl apply -f pvc.yaml 
deployment.apps/web configured
persistentvolumeclaim/my-pvc created
[root@k8s-master ~]# kubectl get pv
NAME      CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM            STORAGECLASS   REASON   AGE
pv00001   5Gi        RWX            Retain           Bound       default/my-pvc                           10m
pv00002   10Gi       RWX            Retain           Available                                            10m
pv00003   10Gi       RWX            Retain           Available                                            10m
//pv00001状态为Bound(bind的过去式),说明是绑定状态,一对一的关系

[root@k8s-master ~]# kubectl get pvc
NAME     STATUS   VOLUME    CAPACITY   ACCESS MODES   STORAGECLASS   AGE
my-pvc   Bound    pv00001   5Gi        RWX                           66s
//查看pvc,名字py-pvc 绑定pv00001 权限读写执行

//创建数据测试是否放在NFS
[root@k8s-master ~]# kubectl get pods
NAME                   READY   STATUS    RESTARTS   AGE
my-pod                 1/1     Running   0          4h42m
web-6c95dbff5f-jqkz6   1/1     Running   0          9m49s
web-6c95dbff5f-kjqjv   1/1     Running   0          9m44s
web-6c95dbff5f-xqc8k   1/1     Running   0          9m55s
[root@k8s-master ~]# kubectl get ep
NAME         ENDPOINTS                                       AGE
kubernetes   192.168.100.110:6443                            3d9h
tomweb       <none>                                          33h
web          10.244.0.202:80,10.244.1.40:80,10.244.1.41:80   25h
web1         <none>                                          24h
web2         <none>                                          24h
[root@k8s-master ~]# kubectl exec -it web-6c95dbff5f-jqkz6 bash
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
root@web-6c95dbff5f-jqkz6:/# cd /usr/share/nginx
root@web-6c95dbff5f-jqkz6:/usr/share/nginx# ls
html
root@web-6c95dbff5f-jqkz6:/usr/share/nginx# cd html
root@web-6c95dbff5f-jqkz6:/usr/share/nginx/html# ls
root@web-6c95dbff5f-jqkz6:/usr/share/nginx/html# echo  "hello" > index.html
root@web-6c95dbff5f-jqkz6:/usr/share/nginx/html# 

//测试nfs存储

[root@localhost kubernetes]# ls
index.html  pv00001  pv00002  pv00003
[root@localhost kubernetes]# ls pv00001
index.html
[root@localhost kubernetes]# ls pv00002
[root@localhost kubernetes]# ls pv00003
[root@localhost kubernetes]# cat pv00001/index.html 
hello

K8S涉及到的是动态挂载后端存储,而不涉及后端存储的容灾,故障恢复

11.5 PV静态供给

静态供给是指提前创建好很多个PV,以供使用。11.4就是静态供给

《K8S进阶》 (下)_第2张图片

先准备一台NFS服务器作为测试。

# yum install nfs-utils
# vi /etc/exports
/ifs/kubernetes *(rw,no_root_squash)
# mkdir -p /ifs/kubernetes
# systemctl start nfs
# systemctl enable nfs

并且要在每个Node上安装nfs-utils包,用于mount挂载时用。

示例:先准备三个PV,分别是5G,10G,20G,修改下面对应值分别创建。

apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv001       # 修改PV名称
spec:
  capacity:
    storage: 30Gi   # 修改大小
  accessModes:
    - ReadWriteMany
  nfs:
    path: /opt/nfs/pv001   # 修改目录名
    server: 192.168.31.62

创建一个Pod使用PV:

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
    - name: nginx
      image: nginx:latest
      ports:
      - containerPort: 80
      volumeMounts:
        - name: www
          mountPath: /usr/share/nginx/html
  volumes:
    - name: www
      persistentVolumeClaim:
        claimName: my-pvc

---

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 5Gi

创建并查看PV与PVC状态:

# kubectl apply -f pod-pv.yaml
# kubectl get pv,pvc

会发现该PVC会与5G PV进行绑定成功。

然后进入到容器中/usr/share/nginx/html(PV挂载目录)目录下创建一个文件测试:

kubectl exec -it my-pod bash
cd /usr/share/nginx/html
echo "123" index.html

再切换到NFS服务器,会发现也有刚在容器创建的文件,说明工作正常。

cd /opt/nfs/pv001
ls
index.html

如果创建一个PVC为16G,你猜会匹配到哪个PV呢?

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

11.6 PV动态供给

《K8S进阶》 (下)_第3张图片

Dynamic Provisioning机制工作的核心在于StorageClass的API对象。

StorageClass声明存储插件,用于自动创建PV。

Kubernetes支持动态供给的存储插件:

https://kubernetes.io/docs/concepts/storage/storage-classes/

11.7 PV动态供给实践(NFS)

《K8S进阶》 (下)_第4张图片

工作流程

由于K8S不支持NFS动态供给,还需要先安装上图中的nfs-client-provisioner插件:

# cd nfs-client
# vi deployment.yaml # 修改里面NFS地址和共享目录为你的
# kubectl apply -f .
# kubectl get pods
NAME                                     READY   STATUS    RESTARTS   AGE
nfs-client-provisioner-df88f57df-bv8h7   1/1     Running   0          49m

测试:

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
    - name: nginx
      image: nginx:latest
      ports:
      - containerPort: 80
      volumeMounts:
        - name: www
          mountPath: /usr/share/nginx/html
  volumes:
    - name: www
      persistentVolumeClaim:
        claimName: my-pvc

---

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc
spec:
  storageClassName: "managed-nfs-storage" "自动供给storage名称"
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 5Gi

这次会自动创建5GPV并与PVC绑定。

kubectl get pv,pvc

测试方法同上,进入到容器中/usr/share/nginx/html(PV挂载目录)目录下创建一个文件测试。

再切换到NFS服务器,会发现下面目录,该目录是自动创建的PV挂载点。进入到目录会发现刚在容器创建的文件。

# ls /opt/nfs/
default-my-pvc-pvc-51cce4ed-f62d-437d-8c72-160027cba5ba

示例:

#class.yaml 自动创建PV
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: managed-nfs-storage "这个名字要与创建Pvc指定的storage名字一致"
provisioner: fuseim.pri/ifs # or choose another name, must match deployment's env PROVISIONER_NAME'
parameters:
  archiveOnDelete: "false"   "是否归档,true表示不归档"
//provisioner: fuseim.pri/ifs这个要与deployment里value:fuseim.pri/ifs 一致
#deployment.yaml 客户
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-client-provisioner
---
kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-client-provisioner
spec:
  replicas: 1
  strategy:
    type: Recreate
  selector:
    matchLabels:
      app: nfs-client-provisioner
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner
      containers:
        - name: nfs-client-provisioner
          image: quay.io/external_storage/nfs-client-provisioner:latest
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: fuseim.pri/ifs   "这里提供者要与class提供者名称一致"
            - name: NFS_SERVER
              value: 192.168.100.200
            - name: NFS_PATH
              value: /ifs/kubernetes
      volumes:
        - name: nfs-client-root
          nfs:
            server: 192.168.100.200
            path: /ifs/kubernetes
//quay.io/external_storage/nfs-client-provisioner:latest 这个镜像要是下不下来改为lizhenliang/nfs-client-provisioner:latest
#rbac.yaml  授权
kind: ServiceAccount
apiVersion: v1
metadata:
  name: nfs-client-provisioner
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: nfs-client-provisioner-runner
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["create", "update", "patch"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-runner
  apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
rules:
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    # replace with namespace where provisioner is deployed
    namespace: default
roleRef:
  kind: Role
  name: leader-locking-nfs-client-provisioner
  apiGroup: rbac.authorization.k8s.io

//实操
[root@k8s-master nfs-client]# ls
class.yaml  deployment.yaml  rbac.yaml
[root@k8s-master nfs-client]# kubectl apply -f .
storageclass.storage.k8s.io/managed-nfs-storage created
serviceaccount/nfs-client-provisioner created
deployment.apps/nfs-client-provisioner created
serviceaccount/nfs-client-provisioner unchanged
clusterrole.rbac.authorization.k8s.io/nfs-client-provisioner-runner created
clusterrolebinding.rbac.authorization.k8s.io/run-nfs-client-provisioner created
role.rbac.authorization.k8s.io/leader-locking-nfs-client-provisioner created
rolebinding.rbac.authorization.k8s.io/leader-locking-nfs-client-provisioner created
//检查服务
[root@k8s-master nfs-client]# kubectl get pods
NAME                                      READY   STATUS    RESTARTS   AGE
nfs-client-provisioner-5f84d68bb5-kblp8   1/1     Running   0          35s
"client-provisioner已经ok"
[root@k8s-master nfs-client]# kubectl get storageClass  #简写sc
NAME                  PROVISIONER      RECLAIMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGE
managed-nfs-storage   fuseim.pri/ifs   Delete          Immediate           false                  2m19s
"manager-nfx-storsage已经ok"

//创建pvc看是否自动创建pv
[root@k8s-master ~]# cp pvc.yaml pvc-auto.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: web
  name: web2 "换个deploy名字"
spec:
  replicas: 1
  selector:
    matchLabels:
      app: web
  strategy: {}
  template:
    metadata:
      labels:
        app: web
    spec:
      containers:
      - image: nginx
        name: nginx
        resources: {}
        volumeMounts:
        - name: data
          mountPath: /usr/share/nginx/html
        ports:
        - containerPort: 80
      volumes:
      - name: data
        persistentVolumeClaim:
          claimName: my-pvc2 "换个名字"
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc2 "与上面换一样的"
spec:
  storageClassName: managed-nfs-storage "定义自动创建pv的storage名称,要与class.yaml里的名字一致"
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 5Gi

[root@k8s-master ~]# kubectl get pv
NAME      CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM            STORAGECLASS   REASON   AGE
pv00001   5Gi        RWX            Retain           Bound       default/my-pvc                           112m
pv00002   10Gi       RWX            Retain           Available                                            112m
pv00003   10Gi       RWX            Retain           Available                                            112m
[root@k8s-master ~]# kubectl apply -f pvc-auto.yaml 
deployment.apps/web2 created
persistentvolumeclaim/my-pvc2 created
[root@k8s-master ~]# kubectl get pv
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM             STORAGECLASS          REASON   AGE
pv00001                                    5Gi        RWX            Retain           Bound       default/my-pvc                                   114m
pv00002                                    10Gi       RWX            Retain           Available                                                    114m
pv00003                                    10Gi       RWX            Retain           Available                                                    114m
pvc-e3e2195c-4ee1-4cc2-ac54-ed96e89b5fb3   5Gi        RWX            Delete           Bound       default/my-pvc2   managed-nfs-storage            6s

"pvc-e3e2195c-4ee1-4cc2-ac54-ed96e89b5fb3 自动创建的pv"

[root@k8s-master ~]# kubectl get pvc
NAME      STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS          AGE
my-pvc    Bound    pv00001                                    5Gi        RWX                                  104m
my-pvc2   Bound    pvc-e3e2195c-4ee1-4cc2-ac54-ed96e89b5fb3   5Gi        RWX            managed-nfs-storage   16s
"可以看到my-pvc2使用的pv,类型为managed-nfs-storage"

第12章:再谈有状态应用部署

前言

问题1:Nginx镜像,Node1故障,在Node2自动拉起新的Pod,还能不能继续提供服务?
可以。

问题2:Mysql镜像,Node1故障,在Node2自动拉起新的Pod,还能不能继续提供服务?
不可以。

可以的前提:你必须做数据持久化 /var/lib/mysql

问题3:Mysql主从,两个Pod分别分配到了Node1和Node2,如果Node1故障,在Node2自动拉起新的Pod,还能不能继续提供服务?
不可以。

有状态应用:在k8s一般指的分布式应用程序,mysql主从、zookeeper集群、etcd集群
1、数据持久化
2、IP地址,名称(为每个Pod分配一个固定DNS名称)有角色的拓扑关系
3、启动顺序 (如mysql主从.要先启动主)

无有状态应用:nginx、api、微服务jar

1.StatefulSet控制器概述

StatefulSet:

  • 部署有状态应用

  • 解决Pod独立生命周期,保持Pod启动顺序和唯一性

  1. 稳定,唯一的网络标识符,持久存储

  2. 有序,优雅的部署和扩展、删除和终止

  3. 有序,滚动更新

应用场景:数据库

  • StatefulSet与Deployment区别:有身份的!

身份三要素:

  1. 域名

  2. 主机名

  3. 存储(PVC)

2.稳定的网络ID

说起StatefulSet稳定的网络标识符,不得不从Headless说起了。

Headless service (无头服务)

标准Service:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: nginx 
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376

无头Service(Headless Service):

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  clusterIP: None "将clousterIP设为none"
  selector:
    app: nginx 
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
[root@k8s-master ~]#  kubectl expose  deployment  web --port=80 --target-port=80 --dry-run -o yaml > service.yaml 
[root@k8s-master ~]# cat service.yaml
apiVersion: v1
kind: Service
metadata:
  creationTimestamp: null
  labels:
    app: web
  name: web
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: web
status:
  loadBalancer: {}
[root@k8s-master ~]# cp service.yaml service-headless.yaml
apiVersion: v1
kind: Service
metadata:
  creationTimestamp: null
  labels:
    app: web
  name: web3
spec:
  clusterIP: None
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: web
status:
  loadBalancer: {}
[root@k8s-master ~]# kubectl apply -f service.yaml
service/web configured
[root@k8s-master ~]# kubectl apply -f service-headless.yaml 
service/web3 created
[root@k8s-master ~]# kubectl  get svc
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)          AGE
kubernetes   ClusterIP   10.0.0.1             443/TCP          3d13h
web          ClusterIP   10.0.0.116           80/TCP           30h
web3         ClusterIP   None                 80/TCP           22m
[root@k8s-master ~]# vim headless.yaml 

apiVersion: v1
kind: Service
metadata:
  name: web
spec:
  clusterIP: None
  selector:
    app: nginx
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80

---

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: etcd
spec:
  selector:
    matchLabels:
      app: nginx
  serviceName: "etcd"
  replicas: 3
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
        resources: {}
[root@k8s-master ~]# kubectl apply -f headless.yaml 
service/etcd created
statefulset.apps/web created
[root@k8s-master ~]# kubectl  get pods
NAME                                      READY   STATUS              RESTARTS   AGE
my-pod                                    1/1     Running             0          9h
nfs-client-provisioner-5f84d68bb5-kblp8   1/1     Running             0          3h44m
web-0                                     1/1     Running             0          28s
web-1                                     0/1     ContainerCreating   0          11s
//会发现三个副本是一个一个创建
[root@k8s-master ~]# kubectl  get pods
NAME                                      READY   STATUS    RESTARTS   AGE
my-pod                                    1/1     Running   0          9h
nfs-client-provisioner-5f84d68bb5-kblp8   1/1     Running   0          3h45m
web-0                                     1/1     Running   0          69s
web-1                                     1/1     Running   0          52s
web-2                                     1/1     Running   0          35s

标准Service与无头Service区别是clusterIP: None,这表示创建Service不要为我(Headless Service)分配Cluster IP,因为我不需要。

为什么标准Service需要?

这就是无状态和有状态的控制器设计理念了,无状态的应用Pod是完全对等的,提供相同的服务,可以在飘移在任意节点,例如Web。而像一些分布式应用程序,例如zookeeper集群、etcd集群、mysql主从,每个实例都会维护着一种状态,每个实例都各自的数据,并且每个实例之间必须有固定的访问地址(组建集群),这就是有状态应用。所以有状态应用是不能像无状态应用那样,创建一个标准Service,然后访问ClusterIP负载均衡到一组Pod上。这也是为什么无头Service不需要ClusterIP的原因,它要的是能为每个Pod固定一个”身份“。

举例说明:

apiVersion: v1
kind: Service
metadata:
  name: headless-svc
spec:
  clusterIP: None
  selector:
    app: nginx 
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80

---

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: web
spec:
  selector:
    matchLabels:
      app: nginx 
  serviceName: "headless-svc"
  replicas: 3 
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx 
        ports:
        - containerPort: 80
          name: web

相比之前讲的yaml,这次多了一个serviceName: “nginx”字段,这就告诉StatefulSet控制器要使用nginx这个headless service来保证Pod的身份。

# kubectl get pods
NAME                                     READY   STATUS    RESTARTS   AGE
my-pod                                   1/1     Running   0          7h50m
nfs-client-provisioner-df88f57df-bv8h7   1/1     Running   0          7h54m
web-0                                    1/1     Running   0          6h55m
web-1                                    1/1     Running   0          6h55m
web-2                                    1/1     Running   0          6h55m
NAME                   TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
service/headless-svc   ClusterIP   None                   80/TCP         7h15m
service/kubernetes     ClusterIP   10.1.0.1               443/TCP        8d

临时创建一个Pod,测试DNS解析:

# kubectl run -i --tty --image busybox:1.28.4 dns-test --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup nginx.default.svc.cluster.local
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
 
Name:      nginx.default.svc.cluster.local
Address 1: 172.17.26.3 web-1.nginx.default.svc.cluster.local
Address 2: 172.17.26.4 web-2.nginx.default.svc.cluster.local
Address 3: 172.17.83.3 web-0.nginx.default.svc.cluster.local

结果得出该Headless Service代理的所有Pod的IP地址和Pod 的DNS A记录。

通过访问web-0.nginx的Pod的DNS名称时,可以解析到对应Pod的IP地址,其他Pod 的DNS名称也是如此,这个DNS名称就是固定身份,在生命周期不会再变化:

/ # nslookup web-0.nginx.default.svc.cluster.local
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      web-0.nginx.default.svc.cluster.local
Address 1: 172.17.83.3 web-0.nginx.default.svc.cluster.local 

进入容器查看它们的主机名:

[root@k8s-master01 ~]# kubectl exec web-0 hostname
web-0
[root@k8s-master01 ~]# kubectl exec web-1 hostname
web-1
[root@k8s-master01 ~]# kubectl exec web-2 hostname
web-2

可以看到,每个Pod都从StatefulSet的名称和Pod的序号中获取主机名的。

不过,相信你也已经注意到了,尽管 web-0.nginx 这条记录本身不会变,但它解析到的 Pod 的 IP 地址,并不是固定的。这就意味着,对于“有状态应用”实例的访问,你必须使用 DNS 记录或者 hostname 的方式,而绝不应该直接访问这些 Pod 的 IP 地址。

以下是Cluster Domain,Service name,StatefulSet名称以及它们如何影响StatefulSet的Pod的DNS名称的一些选择示例。

Cluster Domain Service (ns/name) StatefulSet (ns/name) StatefulSet Domain Pod DNS Pod Hostname
cluster.local default/nginx default/web nginx.default.svc.cluster.local web-{0…N-1}.nginx.default.svc.cluster.local web-{0…N-1}
cluster.local foo/nginx foo/web nginx.foo.svc.cluster.local web-{0…N-1}.nginx.foo.svc.cluster.local web-{0…N-1}
kube.local foo/nginx foo/web nginx.foo.svc.kube.local web-{0…N-1}.nginx.foo.svc.kube.local web-{0…N-1}

3.稳定的存储

StatefulSet的存储卷使用VolumeClaimTemplate创建,称为卷申请模板,当StatefulSet使用VolumeClaimTemplate 创建一个PersistentVolume时,同样也会为每个Pod分配并创建一个编号的PVC。

示例:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: web
spec:
  selector:
    matchLabels:
      app: nginx 
  serviceName: "headless-svc"
  replicas: 3 
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx 
        ports:
        - containerPort: 80
          name: web
        volumeMounts:
        - name: www
          mountPath: /usr/share/nginx/html
  volumeClaimTemplates:
  - metadata:
      name: www
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: "managed-nfs-storage"
      resources:
        requests:
          storage: 1Gi
# kubectl get pv,pvc
NAME                                                        CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM               STORAGECLASS          REASON   AGE
persistentvolume/pv001                                      5Gi        RWX            Retain           Released    default/my-pvc                                     8h
persistentvolume/pv002                                      10Gi       RWX            Retain           Available                                                      8h
persistentvolume/pv003                                      30Gi       RWX            Retain           Available                                                      8h
persistentvolume/pvc-2c5070ff-bcd1-4703-a8dd-ac9b601bf59d   1Gi        RWO            Delete           Bound       default/www-web-0   managed-nfs-storage            6h58m
persistentvolume/pvc-46fd1715-181a-4041-9e93-fa73d99a1b48   1Gi        RWO            Delete           Bound       default/www-web-2   managed-nfs-storage            6h58m
persistentvolume/pvc-c82ae40f-07c5-45d7-a62b-b129a6a011ae   1Gi        RWO            Delete           Bound       default/www-web-1   managed-nfs-storage            6h58m

NAME                              STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS          AGE
persistentvolumeclaim/www-web-0   Bound    pvc-2c5070ff-bcd1-4703-a8dd-ac9b601bf59d   1Gi        RWO            managed-nfs-storage   6h58m
persistentvolumeclaim/www-web-1   Bound    pvc-c82ae40f-07c5-45d7-a62b-b129a6a011ae   1Gi        RWO            managed-nfs-storage   6h58m
persistentvolumeclaim/www-web-2   Bound    pvc-46fd1715-181a-4041-9e93-fa73d99a1b48   1Gi        RWO            managed-nfs-storage   6h58m

结果得知,StatefulSet为每个Pod分配专属的PVC及编号。每个PVC绑定对应的 PV,从而保证每一个 Pod 都拥有一个独立的 Volume,无状态的是共享一个数据卷,有状态的StatefulSet为每个pod创建一个独立的数据卷。

在这种情况下,删除Pods或StatefulSet时,它所对应的PVC和PV不会被删除。所以,当这个Pod被重新创建出现之后,Kubernetes会为它找到同样编号的PVC,挂载这个PVC对应的Volume,从而获取到以前保存在 Volume 里的数据。

小结

StatefulSet与Deployment区别:有身份的!

身份三要素:

  • 域名 (固定网络ID)

  • 主机名 (与pod名称一样)

  • 存储(PVC)

这里为你准备了一个etcd集群,来感受下有状态部署: https://github.com/lizhenliang/k8s-statefulset/tree/master/etcd

第13章:Kubernetes 鉴权框架与用户权限分配

1.Kubernetes的安全框架

  • 访问K8S集群的资源需要过三关:认证、鉴权、准入控制

  • 普通用户若要安全访问集群API Server,往往需要证书、Token或者用户名+密码;Pod访问,需要ServiceAccount

  • K8S安全控制框架主要由下面3个阶段进行控制,每一个阶段都支持插件方式,通过API Server配置来启用插件。

访问API资源要经过以下三关才可以:

  1. Authentication(鉴权) (检查身份,相当于工牌)

  2. Authorization(授权)(能不能进入不同的房间)

  3. Admission Control(准入控制) (控制请求流入)

《K8S进阶》 (下)_第5张图片

2.传输安全,认证,授权,准入控制

传输安全:

  • 告别8080,迎接6443

  • 全面基于HTTPS通信

鉴权:三种客户端身份认证:

  • HTTPS 证书认证:基于CA证书签名的数字证书认证

  • HTTP Token认证:通过一个Token来识别用户

  • HTTP Base认证:用户名+密码的方式认证

授权:

RBAC(Role-Based Access Control,基于角色的访问控制):负责完成授权(Authorization)工作。

根据API请求属性,决定允许还是拒绝。

准入控制:

Adminssion Control实际上是一个准入控制器插件列表,发送到API Server的请求都需要经过这个列表中的每个准入控制器插件的检查,检查不通过,则拒绝请求。

3.使用RBAC授权

RBAC(Role-Based Access Control,基于角色的访问控制),允许通过Kubernetes API动态配置策略。

角色

  • Role:授权特定命名空间的访问权限

  • ClusterRole:授权所有命名空间的访问权限

角色绑定

  • RoleBinding:将角色绑定到主体(即subject)

  • ClusterRoleBinding:将集群角色绑定到主体

主体(subject)

  • User:用户

  • Group:用户组

  • ServiceAccount:服务账号

  • Pod资源限制:request limit

  • 命名空间限制:ResourceQuota

  • Pod默认资源限制:LimitRanger

  • RBAC授权:
    1、创建角色(规则)
    2、创建主体(用户)
    3、角色与主体绑定

《K8S进阶》 (下)_第6张图片

示例:为aliang用户授权default命名空间Pod读取权限

1、用K8S CA签发客户端证书

cat > ca-config.json < aliang-csr.json <

2、生成kubeconfig授权文件

生成kubeconfig授权文件:

kubectl config set-cluster kubernetes \
  --certificate-authority=/etc/kubernetes/pki/ca.crt \
  --embed-certs=true \
  --server=https://192.168.31.61:6443 \
  --kubeconfig=aliang.kubeconfig

# 设置客户端认证
kubectl config set-credentials aliang \
  --client-key=aliang-key.pem \
  --client-certificate=aliang.pem \
  --embed-certs=true \
  --kubeconfig=aliang.kubeconfig

# 设置默认上下文
kubectl config set-context kubernetes \
  --cluster=kubernetes \
  --user=aliang \
  --kubeconfig=aliang.kubeconfig

# 设置当前使用配置
kubectl config use-context kubernetes --kubeconfig=aliang.kubeconfig

3、创建RBAC权限策略

创建角色(权限集合):

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  namespace: default
  name: pod-reader
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["get", "watch", "list"]

将aliang用户绑定到角色:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: read-pods
  namespace: default
subjects:
- kind: User
  name: aliang
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: Role
  name: pod-reader
  apiGroup: rbac.authorization.k8s.io

测试:

# kubectl --kubeconfig=aliang.kubeconfig get pods
NAME                                     READY   STATUS    RESTARTS   AGE
nfs-client-provisioner-df88f57df-bv8h7   1/1     Running   0          8h
web-0                                    1/1     Running   0          7h25m
web-1                                    1/1     Running   0          7h25m
web-2                                    1/1     Running   0          7h25m
# kubectl --kubeconfig=aliang.kubeconfig get pods -n kube-system
Error from server (Forbidden): pods is forbidden: User "aliang" cannot list resource "pods" in API group "" in the namespace "kube-system"

aliang用户只有访问default命名空间Pod读取权限。

实操:

#1、创建角色(规则)
[root@k8s-master ~]# mkdir rbc && cd rbc
//长传脚本
[root@k8s-master rbc]# ls
cert.sh  config.sh  rbac.yaml  sa.yaml
[root@k8s-master ~]# vim cert.sh
cat > ca-config.json < aliang-csr.json <

你可能感兴趣的:(Docker容器与K8s,k8s)