CIFAR-100 数据集就像CIFAR-10,除了它有100个类,每个类包含600个图像。,每类各有500个训练图像和100个测试图像。CIFAR-100 中的100个类被分成20个超类。每个图像都带有一个精细标签(它所属的类)和一个粗糙标签(它所属的超类)
这里使用比较强大的经典网络结构VGG13,根据数据集特点修改部分网络结构,完成 CIFAR100 图片识别。调整后的VGG13网络模型:
# 预处理
def preprocess(x, y):
# x :[-1,1]
x = 2 * tf.cast(x, dtype=tf.float32) / 255 - 1
y = tf.cast(y, dtype=tf.int32)
return x, y
# 数据集加载
(x, y), (x_text, y_text) = datasets.cifar100.load_data()
print("y:",y.shape)
# 压缩最后一个维度为1
y = tf.squeeze(y)
y_text = tf.squeeze(y_text, axis=1)
print('squeeze:',x.shape, y.shape, x_text.shape, y_text.shape)
# 创建batch
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.map(preprocess).shuffle(1000).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x, y))
test_db = test_db.map(preprocess).batch(128)
# 获取下一个batch
sample = next(iter(test_db))
print('sample:', sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
数据集的处理和CIF10的处理是一样的,这里也要将y进行维度压缩如下。将维度为1的压缩,为one_hot编码做准备
上述代码运行后,得到训练集的和形状为:(50000, 32, 32, 3)和(50000),测试集的和形状为(10000, 32, 32, 3)和(10000),分别代表了图片大小为32 × 32,彩色图片,训练集样本数为 50000,测试集样本数为 10000
将网络实现为 2 个子网络:卷积子网络和全连接子网络。卷积子网络由 5 个子模块构成,每个子模块包含了 Conv-Conv-MaxPooling 单元结构
conv_layers = [ # 5 units : conv + conv + max pooling
# units1 64个3x3 卷积核, 输入输出同大小
layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
# 高宽减半
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 2 由于上一层池化层减半,下一层将卷积层的卷积核翻一倍,为了弥补信息特征的减少
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 3
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 4
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 5
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]
一般在上一个池化层进行最大化采用后(pool_size=[2,2] ,s=2),降低了网络的参数量,得到的信息特征后减半,在进行下一个卷积层的时会将卷积核的倍数翻倍,以弥补信息的减少。
# [b,32,32,3] => [b,1,1,512]
conv_net = Sequential(conv_layers)
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(10, activation=None)
])
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
conv_net.summary()
fc_net.summary()
optimizer = optimizers.Adam(learning_rate=1e-4)
# 可训练的变量 两个网络层之和
variables = conv_net.trainable_variables + fc_net.trainable_variables
全连接子网络包含了 3 个全连接层,每层添加 ReLU 非线性激活函数,最后一层除外。卷积子网层输入的就是一张图片大小的维度[32,32,3], 不像全连接层那样需要打平层一维的。但是在进行两层的连接时,需要将卷积子网层打平成一维的。
设置优化器,注意需要将两层的可训练变量加起来。
for step, (x, y) in enumerate(train_db):
# 梯度求导
with tf.GradientTape() as tape:
# [b, 32,32,3 ] =>[b,1,1,512]
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
# [b, 512] => [b, 10]
logits = fc_net(out)
# [b,10] =>
y_onehot = tf.one_hot(y, depth=10)
# loss
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
# 求导
grads = tape.gradient(loss, variables)
# 更新参数
optimizer.apply_gradients(zip(grads, variables))
if step % 100 == 0:
print(epoch, step, 'loss', float(loss))
在全连接层进行向前计算的时,需要将卷积子层的输出进行打平,其余都和前面的一样
# 测试集
total_num = 0
total_correct = 0
for x, y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1) # 概率化,和为1
pred = tf.argmax(prob, axis=1) # 获得最大下标
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32) # 测试值与真实值比较
correct = tf.reduce_sum(correct) # 统计正确的
total_num += x.shape[0] # 样本数
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc', acc)
数据集的形状十分重要,无论是加载后数据集还是要预处理的数据集,都应确保其 shape 准确,否则无法代入网络进行训练
若三,四步有看不懂的地方,可以参考mnist数据集实战那篇文章哦!
# -*- codeing = utf-8 -*-
# @Time : 16:15
# @Author:Paranipd
# @File : cifar100_test.py
# @Software:PyCharm
import tensorflow as tf
from tensorflow.keras import layers, Sequential, datasets, optimizers
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.random.set_seed(2345)
# 预处理
def preprocess(x, y):
# x :[-1,1]
x = 2 * tf.cast(x, dtype=tf.float32) / 255 - 1
y = tf.cast(y, dtype=tf.int32)
return x, y
# 数据集加载
(x, y), (x_text, y_text) = datasets.cifar100.load_data()
print("y:",y.shape)
# 压缩最后一个维度为1
y = tf.squeeze(y)
y_text = tf.squeeze(y_text, axis=1)
print('squeeze:',x.shape, y.shape, x_text.shape, y_text.shape)
# 创建batch
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.map(preprocess).shuffle(1000).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x, y))
test_db = test_db.map(preprocess).batch(128)
# 获取下一个batch
sample = next(iter(test_db))
print('sample:', sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
conv_layers = [ # 5 units : conv + conv + max pooling
# units1 64个3x3 卷积核, 输入输出同大小
layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
# 高宽减半
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 2 由于上一层池化层减半,下一层将卷积层的卷积核翻一倍,为了弥补信息特征的减少
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 3
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 4
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# units 5
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]
def main():
# [b,32,32,3] => [b,1,1,512]
conv_net = Sequential(conv_layers)
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(10, activation=None)
])
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
conv_net.summary()
fc_net.summary()
optimizer = optimizers.Adam(learning_rate=1e-4)
# 可训练的变量 两个网络层之和
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(50):
for step, (x, y) in enumerate(train_db):
# 梯度求导
with tf.GradientTape() as tape:
# [b, 32,32,3 ] =>[b,1,1,512]
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
# [b, 512] => [b, 10]
logits = fc_net(out)
# [b,10] =>
y_onehot = tf.one_hot(y, depth=10)
# loss
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
# 求导
grads = tape.gradient(loss, variables)
# 更新参数
optimizer.apply_gradients(zip(grads, variables))
if step % 100 == 0:
print(epoch, step, 'loss', float(loss))
# 测试集
total_num = 0
total_correct = 0
for x, y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1) # 概率化,和为1
pred = tf.argmax(prob, axis=1) # 获得最大下标
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32) # 测试值与真实值比较
correct = tf.reduce_sum(correct) # 统计正确的
total_num += x.shape[0] # 样本数
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc', acc)
if __name__ == '__main__':
main()