opencv相机内参标定和与halcon内参的转换

opencv摄像机内参标定&halcon内参与opencv内参相互转换

opencv摄像机内参标定

下面展示一些 内联代码片

// 内参标定
var foo = 'bar';
//内参标定

#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>

#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;
using namespace std;
//此处省略各种头文件
using namespace cv;
using namespace std;
//此处省略help()函数
enum {
	DETECTION = 0, CAPTURING = 1, CALIBRATED = 2
};
enum Pattern {
	CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID
};

//计算重投影误差函数
static double computeReprojectionErrors(const vector<vector<Point3f> >& objectPoints,const vector<vector<Point2f> >& imagePoints,
	const vector<Mat>& rvecs, const vector<Mat>& tvecs,const Mat& cameraMatrix, const Mat& distCoeffs,vector<float>& perViewErrors)
{
	vector<Point2f> imagePoints2;
	size_t totalPoints = 0;
	double totalErr = 0, err;
	perViewErrors.resize(objectPoints.size());

	
	return std::sqrt(totalErr / totalPoints);
	//此处省略...
}

static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners)
{
	corners.clear();
	for (int i = 0; i < boardSize.height; ++i)
		for (int j = 0; j < boardSize.width; ++j)
			corners.push_back(Point3f(j*squareSize, i*squareSize, 0));		
	//省略...
	//本文中用到的标定板,在该函数中的参数为:boardSize.width=7,boardSize.height=7,squareSize=0.025(此处单位为米)
}
//执行标定,包括计算重投影误差
static bool runCalibration(vector<vector<Point2f> > imagePoints,
	Size imageSize, Size boardSize, 
	float squareSize, float aspectRatio,
	int flags, Mat& cameraMatrix, Mat& distCoeffs,
	vector<Mat>& rvecs, vector<Mat>& tvecs,
	vector<float>& reprojErrs,
	double& totalAvgErr)
{
	vector<Point3f> newObjPoints;
	//! [fixed_aspect]
	cameraMatrix = Mat::eye(3, 3, CV_64F);
	if (CALIB_FIX_ASPECT_RATIO)
		cameraMatrix.at<double>(0, 0) = aspectRatio;
	//! [fixed_aspect]
	
		distCoeffs = Mat::zeros(8, 1, CV_64F);

	cout << "New board corners: " << endl;
	cout << newObjPoints[0] << endl;
	cout << newObjPoints[boardSize.width - 1] << endl;
	cout << newObjPoints[boardSize.width * (boardSize.height - 1)] << endl;
	cout << newObjPoints.back() << endl;
	cout << "Re-projection error reported by calibrateCamera: " << rms << endl;
	bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
	bool isw = false;
	objectPoints.clear();
	objectPoints.resize(imagePoints.size(), newObjPoints);
	totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix,
		distCoeffs, reprojErrs);
	//省略...
	return true;
}

//读取字符串
static bool readStringList(const string& filename, vector<string>& l)
{
	l.resize(0);
	FileStorage fs(filename, FileStorage::READ);
	if (!fs.isOpened())
		return false;
	FileNode n = fs["images"];
	if (n.type() != FileNode::SEQ)
		return false;
	FileNodeIterator it = n.begin(), it_end = n.end();
	for (; it != it_end; ++it)
		l.push_back((string)*it);
	return true;
}

//运行并保存
static bool runAndSave(const string& outputFilename,
	const vector<vector<Point2f> >& imagePoints,
	Size imageSize, Size boardSize, Pattern patternType, float squareSize,
	float aspectRatio, int flags, Mat& cameraMatrix,
	Mat& distCoeffs, bool writeExtrinsics, bool writePoints)
{
	vector<Mat> rvecs, tvecs;
	vector<float> reprojErrs;
	double totalAvgErr = 0;
	vector<Point3f> newObjPoints;

	bool ok = runCalibration(imagePoints, imageSize, boardSize, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, rvecs, tvecs,	reprojErrs,totalAvgErr);
	cout << (ok ? "Calibration succeeded" : "Calibration failed")
		<< ". avg re projection error = " << totalAvgErr << endl;

	FileStorage fs(outputFilename, FileStorage::WRITE);

	time_t tm;
	time(&tm);
	struct tm *t2 = localtime(&tm);
	char buf[1024];
	strftime(buf, sizeof(buf), "%c", t2);

	fs << "calibration_time" << buf;

	if (!rvecs.empty() || !reprojErrs.empty())
		fs << "nr_of_frames" << (int)std::max(rvecs.size(), reprojErrs.size());
	fs << "image_width" << imageSize.width;
	fs << "image_height" << imageSize.height;
	fs << "board_width" << boardSize.width;
	fs << "board_height" << boardSize.height;
	fs << "square_size" << squareSize;

	std::stringstream flagsStringStream;
	bool flag = true;
	flagsStringStream << "flags:"
		<< (flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "")
		<< (flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "")
		<< (flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "")
		<< (flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "")
		<< (flag & CALIB_FIX_K1 ? " +fix_k1" : "")
		<< (flag & CALIB_FIX_K2 ? " +fix_k2" : "")
		<< (flag & CALIB_FIX_K3 ? " +fix_k3" : "")
		<< (flag & CALIB_FIX_K4 ? " +fix_k4" : "")
		<< (flag & CALIB_FIX_K5 ? " +fix_k5" : "");

	fs.writeComment(flagsStringStream.str());

	fs << "camera_matrix" << cameraMatrix;
	fs << "distortion_coefficients" << distCoeffs;

	fs << "avg_reprojection_error" << totalAvgErr;
	if ( !reprojErrs.empty())
		fs << "per_view_reprojection_errors" << Mat(reprojErrs);

	if (!rvecs.empty() && !tvecs.empty())
	{
		CV_Assert(rvecs[0].type() == tvecs[0].type());
		Mat bigmat((int)rvecs.size(), 6, CV_MAKETYPE(rvecs[0].type(), 1));
		bool needReshapeR = rvecs[0].depth() != 1 ? true : false;
		bool needReshapeT = tvecs[0].depth() != 1 ? true : false;

		for (size_t i = 0; i < rvecs.size(); i++)
		{
			Mat r = bigmat(Range(int(i), int(i + 1)), Range(0, 3));
			Mat t = bigmat(Range(int(i), int(i + 1)), Range(3, 6));

			if (needReshapeR)
				rvecs[i].reshape(1, 1).copyTo(r);
			else
			{
				//*.t() is MatExpr (not Mat) so we can use assignment operator
				CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
				r = rvecs[i].t();
			}

			if (needReshapeT)
				tvecs[i].reshape(1, 1).copyTo(t);
			else
			{
				CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
				t = tvecs[i].t();
			}
		}
		fs.writeComment("a set of 6-tuples (rotation vector + translation vector) for each view");
		fs << "extrinsic_parameters" << bigmat;
	}

	if (writePoints && !imagePoints.empty())
	{
		Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
		for (size_t i = 0; i < imagePoints.size(); i++)
		{
			Mat r = imagePtMat.row(int(i)).reshape(2, imagePtMat.cols);
			Mat imgpti(imagePoints[i]);
			imgpti.copyTo(r);
		}
		fs << "image_points" << imagePtMat;
	}

	if (!newObjPoints.empty())
	{
		fs << "grid_points" << newObjPoints;
	}
	return true;
}

int main(int argc, char** argv)
{
	cout << argc << endl;
	for (size_t i = 0; i < argc; i++)
	{
		cout << argv[i] << endl;
	}

	Size boardSize, imageSize;
	float squareSize, aspectRatio;
	Mat cameraMatrix = Mat::eye(3, 3, CV_64F), distCoeffs;
	string outputFilename;
	string inputFilename = "";

	int i, nframes;
	bool writeExtrinsics, writePoints;
	bool undistortImage = false;
	int flags = 0;
	VideoCapture capture;
	bool flipVertical;
	bool showUndistorted;
	bool videofile;
	int delay;
	clock_t prevTimestamp = 0;
	int mode = DETECTION;
	int cameraId = 0;
	vector<vector<Point2f> > imagePoints;
	vector<string> imageList;
	Pattern pattern = CIRCLES_GRID;//标定图案类型,对称圆形图案
	boardSize.width = parser.get<int>("w");
	boardSize.height = parser.get<int>("h");
	if (parser.has("pt"))
	{
		string val = parser.get<string>("pt");
		if (val == "circles")
			pattern = CIRCLES_GRID;
		else if (val == "acircles")
			pattern = ASYMMETRIC_CIRCLES_GRID;
		else if (val == "chessboard")
			pattern = CHESSBOARD;
		else
			return fprintf(stderr, "Invalid pattern type: must be chessboard or circles\n"), -1;
	}
	squareSize = parser.get<float>("s");
	nframes = parser.get<int>("n");
	aspectRatio = parser.get<float>("a");
	delay = parser.get<int>("d");
	writePoints = parser.has("op");
	writeExtrinsics = parser.has("oe");
	if (parser.has("a"))
		flags |= CALIB_FIX_ASPECT_RATIO;
	if (parser.has("zt"))
		flags |= CALIB_ZERO_TANGENT_DIST;
	if (parser.has("p"))
		flags |= CALIB_FIX_PRINCIPAL_POINT;
	flipVertical = parser.has("v");
	videofile = parser.has("V");
	if (parser.has("o"))
		outputFilename = parser.get<string>("o");
	showUndistorted = parser.has("su");
	if (isdigit(parser.get<string>("input_data")[0]))
		cameraId = parser.get<int>("input_data");
	else
		inputFilename = parser.get<string>("input_data");

	if (!parser.check())
	{
		parser.printErrors();
		return -1;
	}
	if (squareSize <= 0)
		return fprintf(stderr, "Invalid board square width\n"), -1;
	if (nframes <= 3)
		return printf("Invalid number of images\n"), -1;
	if (aspectRatio <= 0)
		return printf("Invalid aspect ratio\n"), -1;
	if (delay <= 0)
		return printf("Invalid delay\n"), -1;
	if (boardSize.width <= 0)
		return fprintf(stderr, "Invalid board width\n"), -1;
	if (boardSize.height <= 0)
		return fprintf(stderr, "Invalid board height\n"), -1;

	if (!inputFilename.empty())
	{
		if (!videofile && readStringList(inputFilename, imageList))
			mode = CAPTURING;
		else
			capture.open(inputFilename);
	}
	else
		capture.open(cameraId);

	if (!capture.isOpened() && imageList.empty())
		return fprintf(stderr, "Could not initialize video (%d) capture\n", cameraId), -2;

	if (!imageList.empty())
		nframes = (int)imageList.size();

	namedWindow("Image View",WINDOW_AUTOSIZE);
	
	for (i = 0;; i++)
	{
		Mat view, viewGray;
		bool blink = false;		
		if (i < (int)imageList.size())
		{
			view = imread(imageList[i], 1);
			cvtColor(view, viewGray, COLOR_BGR2GRAY);
		}
		else
		{
			break;
		}
		imageSize = view.size();
		vector<Point2f> pointbuf;
		bool found;
		imagePoints.push_back(pointbuf);		
		if (found)
			drawChessboardCorners(view, boardSize, Mat(pointbuf), found);//在原图中绘制找到的圆心点,图4为其中的一幅图

		string msg = mode == CAPTURING ? "100/100" :
			mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
		int baseLine = 0;
		Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
		Point textOrigin(view.cols - 2 * textSize.width - 10, view.rows - 2 * baseLine - 10);

		/*if (mode == CAPTURING)
		{
			if (undistortImage)
				msg = format("%d/%d Undist", (int)imagePoints.size(), nframes);
			else
				msg = format("%d/%d", (int)imagePoints.size(), nframes);
		}*/

		putText(view, msg, textOrigin, 1, 1,
			mode != CALIBRATED ? Scalar(0, 0, 255) : Scalar(0, 255, 0));

		if (blink)
			bitwise_not(view, view);

		if (mode == CALIBRATED && undistortImage)
		{
			Mat temp = view.clone();
			undistort(temp, view, cameraMatrix, distCoeffs);
		}

		imshow("Image View", view);
		char key = (char)waitKey(capture.isOpened() ? 50 : 500);

		if (key == 27)
			break;

		if (key == 'u' && mode == CALIBRATED)
			undistortImage = !undistortImage;

		if (capture.isOpened() && key == 'g')
		{
			mode = CAPTURING;
			imagePoints.clear();
		}	

		if (imagePoints.size() >= (unsigned)nframes)
		{
			if (runAndSave(outputFilename, imagePoints, imageSize, boardSize, pattern, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, writeExtrinsics, writePoints))
				mode = CALIBRATED;
			else
				mode = DETECTION;
		}
	}
	//畸变矫正
	/*if (!capture.isOpened() && !showUndistorted)
	{
		Mat view, rview, map1, map2;		
		initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),imageSize, CV_16SC2, map1, map2);

		for (size_t i = 0; i < imageList.size(); i++)
		{
			view = imread(imageList[i], IMREAD_COLOR);
			if (view.empty())
				continue;
			remap(view, rview, map1, map2, INTER_LINEAR);
			imshow("Image View", rview);
			char c = (char)waitKey();		
		}
		
		
	}*/

	return 0;
}

halcon内参和opencv内参标定结果
opencv相机内参标定和与halcon内参的转换_第1张图片

opencv相机内参标定和与halcon内参的转换_第2张图片xiamian

halcon内参与opencv内参相互转换

opencv_fx = halcon_f / sx *1000
opencv_fy = halcon_f / sy *1000

opencv相机内参标定和与halcon内参的转换_第3张图片opencv的内参矩阵,其中f是焦距,dx是单个像元的宽,dy是单个像元的高,u0是中心点X坐标,v0是中心点Y坐标(对应halcon标定的参数)

链接: [link](https://pan.baidu.com/s/1ukJ87D820tR6m7xzlvR66w /)
提取码:q5nu

你可能感兴趣的:(opencv,计算机视觉,人工智能)