【机器视觉学习笔记】-001.环境篇

文章目录

  • 1.环境篇
    • 1.1 什么是Conda
    • 1.2 安装Conda(Miniconda)
      • 1.2.1 基础环境
      • 1.2.2 下载Miniconda
      • 1.2.3 开始安装Miniconda
        • 第一步 安装
        • 第二步 测试
        • 第三步 安装国内镜像(清华大学)
          • Conda 国内镜像
          • PIP国内镜像
    • 1.3 使用Conda+pip安装包
        • 1.3.1 创建工作环境
        • 1.3.2 安装Opencv
        • 1.3.3 安装mediapipe
          • 1.3.3.1 初次用conda尝试安装
          • 1.3.3.2 用pip安装
      • 1.4 测试代码执行

1.环境篇

1.1 什么是Conda

一直在学习Python的过程中,就对各种版本、包、依赖等等一系列的东西搞得焦头烂额。直到今天找到了Conda。

Conda 是一个开源包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。 它适用于Linux,OS X和Windows,是为Python程序创建的,但可以打包和分发任何软件。

Conda一般分为两个发布版本

  • Anaconda

    是一个开源的Python发行版本,包含了conda、python等180多个科学包及其依赖项。因为包含了大量的科学包,所以Anaconda的安装包比较大。

    下载地址:https://www.anaconda.com/download/

  • Miniconda 是最小的conda安装环境。特点是包需要根据需要自行安装。

    下载地址:https://conda.io/miniconda.html

1.2 安装Conda(Miniconda)

1.2.1 基础环境

  • 华为Metabook E / Windows 11

    设备名称 tdouya-metabook
    处理器 11th Gen Intel® Core™ i7-1160G7 @ 1.20GHz 2.11 GHz
    机带 RAM 16.0 GB (15.8 GB 可用)
    设备 ID
    产品 ID
    系统类型 64 位操作系统, 基于 x64 的处理器
    笔和触控 为 10 触摸点提供笔和触控支持

    版本 Windows 11 家庭中文版
    版本 21H2
    安装日期 ‎2021/‎12/‎26
    操作系统版本 22000.556
    体验 Windows 功能体验包 1000.22000.556.0
    【机器视觉学习笔记】-001.环境篇_第1张图片

  • 未安装任何Python版本
    【机器视觉学习笔记】-001.环境篇_第2张图片

1.2.2 下载Miniconda

​ 使用下载地址: https://conda.io/miniconda.html

【机器视觉学习笔记】-001.环境篇_第3张图片

【机器视觉学习笔记】-001.环境篇_第4张图片

1.2.3 开始安装Miniconda

第一步 安装

【机器视觉学习笔记】-001.环境篇_第5张图片 【机器视觉学习笔记】-001.环境篇_第6张图片 【机器视觉学习笔记】-001.环境篇_第7张图片 【机器视觉学习笔记】-001.环境篇_第8张图片 【机器视觉学习笔记】-001.环境篇_第9张图片 【机器视觉学习笔记】-001.环境篇_第10张图片 【机器视觉学习笔记】-001.环境篇_第11张图片 【机器视觉学习笔记】-001.环境篇_第12张图片

第二步 测试

【机器视觉学习笔记】-001.环境篇_第13张图片

测试conda和python显示版本号,安装成功。(下次再写文档,应该连pip的版本号应该一并打出来)

image-20220406125251175

第三步 安装国内镜像(清华大学)

PS:清华大学的镜像站首页是: https://mirrors.tuna.tsinghua.edu.cn/ 里面有非常多的国外镜像。

Conda 国内镜像

切换至清华大学镜像站 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

按照说明,执行命令,创建配置文件

【机器视觉学习笔记】-001.环境篇_第14张图片

根据镜像站说明的内容,清除掉原有内容后,复制镜像站说明中指定的内容

【机器视觉学习笔记】-001.环境篇_第15张图片

按照命令清除索引缓存

【机器视觉学习笔记】-001.环境篇_第16张图片
PIP国内镜像

临时使用清华大学镜像升级pip至最新版本(这本身也是使用临时镜像的一种方式)

【机器视觉学习笔记】-001.环境篇_第17张图片

配置清华大学镜像站为默认地址,查看一下内容。

image-20220406131629622

个别教程中,此文件还有一个trust信息,但是自动生成的代码里面没有,所以我也没有再去追加。整个环境搭建下来,没有任何问题。下面将别人trust的部分写在下面以备查

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
[install]
trusted-host = pypi.tuna.tsinghua.edu.cn

1.3 使用Conda+pip安装包

1.3.1 创建工作环境

创建了一个用于学习测试用的python3.8版本的环境

切换工作工作环境的命令为:conda create --name <工作环境名称> python=

(base) PS C:\Users\mike_> conda create --name learn_3.8 python=3.8     
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: D:\S30-Miniconda\envs\learn_3.8

  added / updated specs:
    - python=3.8


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    ca-certificates-2022.3.29  |       haa95532_0         122 KB  defaults
    certifi-2021.10.8          |   py38haa95532_2         152 KB  defaults
    openssl-1.1.1n             |       h2bbff1b_0         4.8 MB  defaults
    pip-21.2.2                 |   py38haa95532_0         1.9 MB  defaults
    python-3.8.13              |       h6244533_0        16.5 MB  defaults
    setuptools-58.0.4          |   py38haa95532_0         779 KB  defaults
    sqlite-3.38.2              |       h2bbff1b_0         807 KB  defaults
    vc-14.2                    |       h21ff451_1           8 KB  defaults
    vs2015_runtime-14.27.29016 |       h5e58377_2        1007 KB  defaults
    wheel-0.37.1               |     pyhd3eb1b0_0          33 KB  defaults
    wincertstore-0.2           |   py38haa95532_2          15 KB  defaults
    ------------------------------------------------------------
                                           Total:        26.1 MB

The following NEW packages will be INSTALLED:

done
#
# To activate this environment, use
#
#     $ conda activate learn_3.8
#
# To deactivate an active environment, use
#
#     $ conda deactivate

(base) PS C:\Users\mike_>

1.3.2 安装Opencv

切换工作工作环境的命令为:conda activate <工作环境名称>

conda安装包的命令为:conda install <包名称>

(base) PS C:\Users\mike_> conda activate learn_3.8   // 切换至1.3.1中创建的工作环境
(learn_3.8) PS C:\Users\mike_> conda install opencv  // 安装opencv
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: D:\S30-Miniconda\envs\learn_3.8

  added / updated specs:
    - opencv


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    blas-1.0                   |              mkl           6 KB  defaults
    eigen-3.3.7                |       h59b6b97_1         831 KB  defaults
    glib-2.69.1                |       h5dc1a3c_1         1.6 MB  defaults
    gst-plugins-base-1.18.5    |       h9e645db_0         1.7 MB  defaults
    gstreamer-1.18.5           |       hd78058f_0         1.7 MB  defaults
    hdf5-1.10.6                |       h7ebc959_0         7.9 MB  defaults
    icc_rt-2019.0.0            |       h0cc432a_1         6.0 MB  defaults
    icu-58.2                   |       ha925a31_3         9.4 MB  defaults
    intel-openmp-2021.4.0      |    haa95532_3556         2.2 MB  defaults
    jpeg-9d                    |       h2bbff1b_0         283 KB  defaults
    libffi-3.4.2               |       h604cdb4_1          43 KB  defaults
    libiconv-1.15              |       h1df5818_7         626 KB  defaults
    libogg-1.3.5               |       h2bbff1b_1          33 KB  defaults
    libpng-1.6.37              |       h2a8f88b_0         333 KB  defaults
    libprotobuf-3.5.1          |       he0781b1_0         1.6 MB  defaults
    libtiff-4.2.0              |       hd0e1b90_0         786 KB  defaults
    libvorbis-1.3.7            |       he774522_0         202 KB  defaults
    libwebp-base-1.2.2         |       h2bbff1b_0         304 KB  defaults
    lz4-c-1.9.3                |       h2bbff1b_1         132 KB  defaults
    mkl-2021.4.0               |     haa95532_640       114.9 MB  defaults
    mkl-service-2.4.0          |   py38h2bbff1b_0          51 KB  defaults
    mkl_fft-1.3.1              |   py38h277e83a_0         139 KB  defaults
    mkl_random-1.2.2           |   py38hf11a4ad_0         225 KB  defaults
    numpy-1.16.6               |   py38ha4e8547_3          50 KB  defaults
    numpy-base-1.16.6          |   py38h5bb6eb2_3         3.3 MB  defaults
    opencv-4.5.4               |   py38h22b9916_3        23.7 MB  defaults
    pcre-8.45                  |       hd77b12b_0         382 KB  defaults
    qt-5.9.7                   |   vc14h73c81de_0        72.5 MB  defaults
    six-1.16.0                 |     pyhd3eb1b0_1          18 KB  defaults
    xz-5.2.5                   |       h62dcd97_0         244 KB  defaults
    zlib-1.2.11                |       hbd8134f_5         114 KB  defaults
    zstd-1.4.9                 |       h19a0ad4_0         478 KB  defaults
    ------------------------------------------------------------
                                           Total:       251.7 MB

The following NEW packages will be INSTALLED:

  blas               anaconda/pkgs/main/win-64::blas-1.0-mkl
  eigen              anaconda/pkgs/main/win-64::eigen-3.3.7-h59b6b97_1
  glib               anaconda/pkgs/main/win-64::glib-2.69.1-h5dc1a3c_1
  gst-plugins-base   anaconda/pkgs/main/win-64::gst-plugins-base-1.18.5-h9e645db_0
  gstreamer          anaconda/pkgs/main/win-64::gstreamer-1.18.5-hd78058f_0
  hdf5               anaconda/pkgs/main/win-64::hdf5-1.10.6-h7ebc959_0
  icc_rt             anaconda/pkgs/main/win-64::icc_rt-2019.0.0-h0cc432a_1
  icu                anaconda/pkgs/main/win-64::icu-58.2-ha925a31_3
  intel-openmp       anaconda/pkgs/main/win-64::intel-openmp-2021.4.0-haa95532_3556
  jpeg               anaconda/pkgs/main/win-64::jpeg-9d-h2bbff1b_0
  libffi             anaconda/pkgs/main/win-64::libffi-3.4.2-h604cdb4_1
  libiconv           anaconda/pkgs/main/win-64::libiconv-1.15-h1df5818_7
  libogg             anaconda/pkgs/main/win-64::libogg-1.3.5-h2bbff1b_1
  libpng             anaconda/pkgs/main/win-64::libpng-1.6.37-h2a8f88b_0
  libprotobuf        anaconda/pkgs/main/win-64::libprotobuf-3.5.1-he0781b1_0
  libtiff            anaconda/pkgs/main/win-64::libtiff-4.2.0-hd0e1b90_0
  libvorbis          anaconda/pkgs/main/win-64::libvorbis-1.3.7-he774522_0
  libwebp-base       anaconda/pkgs/main/win-64::libwebp-base-1.2.2-h2bbff1b_0
  lz4-c              anaconda/pkgs/main/win-64::lz4-c-1.9.3-h2bbff1b_1
  mkl                anaconda/pkgs/main/win-64::mkl-2021.4.0-haa95532_640
  mkl-service        anaconda/pkgs/main/win-64::mkl-service-2.4.0-py38h2bbff1b_0
  mkl_fft            anaconda/pkgs/main/win-64::mkl_fft-1.3.1-py38h277e83a_0
  mkl_random         anaconda/pkgs/main/win-64::mkl_random-1.2.2-py38hf11a4ad_0
  numpy              anaconda/pkgs/main/win-64::numpy-1.16.6-py38ha4e8547_3
  numpy-base         anaconda/pkgs/main/win-64::numpy-base-1.16.6-py38h5bb6eb2_3
  opencv             anaconda/pkgs/main/win-64::opencv-4.5.4-py38h22b9916_3
  pcre               anaconda/pkgs/main/win-64::pcre-8.45-hd77b12b_0
  qt                 anaconda/pkgs/main/win-64::qt-5.9.7-vc14h73c81de_0
  six                anaconda/pkgs/main/noarch::six-1.16.0-pyhd3eb1b0_1
  xz                 anaconda/pkgs/main/win-64::xz-5.2.5-h62dcd97_0
  zlib               anaconda/pkgs/main/win-64::zlib-1.2.11-hbd8134f_5
  zstd               anaconda/pkgs/main/win-64::zstd-1.4.9-h19a0ad4_0


Proceed ([y]/n)? y


Downloading and Extracting Packages
eigen-3.3.7          | 831 KB    | ############################################################################ | 100%
libprotobuf-3.5.1    | 1.6 MB    | ############################################################################ | 100%
libvorbis-1.3.7      | 202 KB    | ############################################################################ | 100%
gstreamer-1.18.5     | 1.7 MB    | ############################################################################ | 100%
done
(learn_3.8) PS C:\Users\mike_>

1.3.3 安装mediapipe

1.3.3.1 初次用conda尝试安装

下列代码第七行提示,无法找到这个包

(learn_3.8) PS C:\Users\mike_> conda install mediapipe
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Collecting package metadata (repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.

PackagesNotFoundError: The following packages are not available from current channels:

  - mediapipe

Current channels:

  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/win-64
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/noarch
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/win-64
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/noarch

To search for alternate channels that may provide the conda package you're
looking for, navigate to

    https://anaconda.org

and use the search bar at the top of the page.


(learn_3.8) PS C:\Users\mike_>
1.3.3.2 用pip安装

之所以1.3.3.1中conda安装失败,原因是conda没有把mediapipe集成进去。此时用pip安装。

仔细看下面安装过程的48-51行,可以发现,在安装过程中,mediapipe的依赖关系还把原本numpy 的1.16.6的版本卸载了,安装了新的1.22.3版本。原本的numpy1.16.6的版本是在装OpenCV的时候安装的。(参考1.3.2中安装过程的第81行)

(learn_3.8) PS C:\Users\mike_> pip install mediapipe
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting mediapipe
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/00/46/cb9c3990abd1d862bb120f40e9ce9e27728928e280ec37edd5e538b5997b/mediapipe-0.8.9.1-cp38-cp38-win_amd64.whl (48.5 MB)
     |████████████████████████████████| 48.5 MB 6.4 MB/s
Collecting matplotlib
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/83/a5/d079d2287ac7a6389059a0e52537dc2e2ff342580512f42f6c7844c451a0/matplotlib-3.5.1-cp38-cp38-win_amd64.whl (7.2 MB)
     |████████████████████████████████| 7.2 MB 6.8 MB/s
Collecting absl-py
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2c/03/e3e19d3faf430ede32e41221b294e37952e06acc96781c417ac25d4a0324/absl_py-1.0.0-py3-none-any.whl (126 kB)
     |████████████████████████████████| 126 kB ...
Collecting opencv-contrib-python
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2e/63/c02ffce9f182dd77fad7ee1f333a6a2aca1a5a2c14a683d30b5d2bd8d8db/opencv_contrib_python-4.5.5.64-cp36-abi3-win_amd64.whl (42.2 MB)
     |████████████████████████████████| 42.2 MB 6.4 MB/s
Collecting protobuf>=3.11.4
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/07/36/998db8bbde6980eff255a2701e16c871a950cbdc298ed9abe302f9301160/protobuf-3.20.0-cp38-cp38-win_amd64.whl (904 kB)
     |████████████████████████████████| 904 kB 6.4 MB/s
Collecting attrs>=19.1.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/be/be/7abce643bfdf8ca01c48afa2ddf8308c2308b0c3b239a44e57d020afa0ef/attrs-21.4.0-py2.py3-none-any.whl (60 kB)
     |████████████████████████████████| 60 kB 3.7 MB/s
Requirement already satisfied: numpy in d:\s30-miniconda\envs\learn_3.8\lib\site-packages (from mediapipe) (1.16.6)
Requirement already satisfied: six in d:\s30-miniconda\envs\learn_3.8\lib\site-packages (from absl-py->mediapipe) (1.16.0)
Collecting cycler>=0.10
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/5c/f9/695d6bedebd747e5eb0fe8fad57b72fdf25411273a39791cde838d5a8f51/cycler-0.11.0-py3-none-any.whl (6.4 kB)
Collecting python-dateutil>=2.7
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/36/7a/87837f39d0296e723bb9b62bbb257d0355c7f6128853c78955f57342a56d/python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
     |████████████████████████████████| 247 kB ...
Collecting numpy
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/fa/f2/f4ec28f935f980167740c5af5a1908090a48a564bed5e689f4b92386d7d9/numpy-1.22.3-cp38-cp38-win_amd64.whl (14.7 MB)
     |████████████████████████████████| 14.7 MB ...
Collecting fonttools>=4.22.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/b0/5c/5dd502b0e2e0cb2980fc4ed17e970089003e377115abf79b1918097f4996/fonttools-4.31.2-py3-none-any.whl (899 kB)
     |████████████████████████████████| 899 kB 6.4 MB/s
Collecting packaging>=20.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/05/8e/8de486cbd03baba4deef4142bd643a3e7bbe954a784dc1bb17142572d127/packaging-21.3-py3-none-any.whl (40 kB)
     |████████████████████████████████| 40 kB ...
Collecting pyparsing>=2.2.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/80/c1/23fd82ad3121656b585351aba6c19761926bb0db2ebed9e4ff09a43a3fcc/pyparsing-3.0.7-py3-none-any.whl (98 kB)
     |████████████████████████████████| 98 kB 435 kB/s
Collecting kiwisolver>=1.0.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/97/2d/32ae1ce44d5b514dce568a809b3bed15d60ee1501b9fa9853a0fee705b59/kiwisolver-1.4.2-cp38-cp38-win_amd64.whl (55 kB)
     |████████████████████████████████| 55 kB 280 kB/s
Collecting pillow>=6.2.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/cf/81/b40ed97024fa0e7c6305495928996e8f46ab153b07e0f74240f49eec7b7c/Pillow-9.1.0-cp38-cp38-win_amd64.whl (3.3 MB)
     |████████████████████████████████| 3.3 MB 6.4 MB/s
Installing collected packages: pyparsing, python-dateutil, pillow, packaging, numpy, kiwisolver, fonttools, cycler, protobuf, opencv-contrib-python, matplotlib, attrs, absl-py, mediapipe
  Attempting uninstall: numpy
    Found existing installation: numpy 1.16.6
    Uninstalling numpy-1.16.6:
      Successfully uninstalled numpy-1.16.6
Successfully installed absl-py-1.0.0 attrs-21.4.0 cycler-0.11.0 fonttools-4.31.2 kiwisolver-1.4.2 matplotlib-3.5.1 mediapipe-0.8.9.1 numpy-1.22.3 opencv-contrib-python-4.5.5.64 packaging-21.3 pillow-9.1.0 protobuf-3.20.0 pyparsing-3.0.7 python-dateutil-2.8.2
(learn_3.8) PS C:\Users\mike_>

1.4 测试代码执行

第一行代码:切换工作目录。工作环境中执行程序并不囿于conda目录

第二行代码:直接执行

(learn_3.8) PS C:\Users\mike_> cd D:\S20-Python3\60-MachineVision
(learn_3.8) PS D:\S20-Python3\60-MachineVision> python 01.py
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.

测试代码:

注意:代码24行打开摄像头,田老师笔记本的0号摄像头是后置摄像头,1号摄像头是前置摄像头。 所以执行时24行是1。

此程序在窗口获得焦点的时候按字母‘p’会关闭。单纯点右上角关闭的“x”号是没用滴。

"""
演示Demo
"""

# 导入opencv
import cv2
import numpy as np
import math

# 导入mediapipe:https://google.github.io/mediapipe/solutions/hands
import mediapipe as mp


mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands

hands = mp_hands.Hands(
    model_complexity=0,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5)

# 读取视频流
cap = cv2.VideoCapture(0)

# 获取画面宽度、高度
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))


while True:
    ret,frame = cap.read()


    # 镜像
    frame = cv2.flip(frame,1)

    frame.flags.writeable = False
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    # 识别
    results = hands.process(frame)

    frame.flags.writeable = True
    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

    

    # 如果有结果
    if results.multi_hand_landmarks:
        
        # 遍历双手
        for hand_landmarks in results.multi_hand_landmarks:
            mp_drawing.draw_landmarks(
                frame,
                hand_landmarks,
                mp_hands.HAND_CONNECTIONS,
                mp_drawing_styles.get_default_hand_landmarks_style(),
                mp_drawing_styles.get_default_hand_connections_style())
            
    
    # 显示画面
    cv2.imshow('demo',frame)

    if cv2.waitKey(10) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

你可能感兴趣的:(机器视觉,python,conda,计算机视觉)