tf/torch 更新/赋值tensor

Tensorflow

tf.assign(不好用,千万别用。请用tf.scatter_update方法)

def t6():
    """
    success
    Returns:
    """
    sess = tf.Session()
    a = tf.get_variable(dtype=tf.int32, shape=[10, 3], name='item_table')
    print(a)
    a = a[5,:].assign([100,100,100])
    print(a)
    sess.run(tf.global_variables_initializer())
    print(sess.run(a))

结果tf/torch 更新/赋值tensor_第1张图片

记住tf.assign之后,这个对象就不再是variable了,所以下面两段代码(t7,t8)是错误的

def t7():
    """
    error
    Returns:
    """
    sess = tf.Session()
    a = tf.get_variable(dtype=tf.int32, shape=[10, 3], name='item_table')
    a[5,:].assign([100,100,100])
    sess.run(tf.global_variables_initializer())
    print(sess.run(a))
    a[6,:].assign([200, 200, 200])
    print(sess.run(a))

def t8():
    """
    error
    Returns:
    """
    sess = tf.Session()
    a = tf.get_variable(dtype=tf.int32, shape=[10, 3], name='item_table')
    a = a[5,:].assign([100,100,100])
    a = a[6,:].assign([200, 200, 200])
    sess.run(tf.global_variables_initializer())
    print(sess.run(a))

tf.scatter_update

def t9():
    """
    success
    Returns:
    """
    sess = tf.Session()
    a = tf.get_variable(dtype=tf.int32, shape=[4, 3], name='item_table')
    b = tf.placeholder(tf.int32, shape=(None, ))
    c = tf.placeholder(tf.int32, shape=(None, 3))
    d = tf.scatter_update(a, b, c)

    sess.run(tf.global_variables_initializer())
    i = 0
    while i < 4:
        k = sess.run(d, feed_dict={b: [i,i+1], c:[[i, 2, 3], [i+1, 5, 6]]})
        i = i + 2
        print(k)
    print("---------------")
    print(sess.run(a))

 结果

tf/torch 更新/赋值tensor_第2张图片

Pytorch

a.weight.data *= 0
a.weight.data = torch.ones([5])

你可能感兴趣的:(机器学习,tensorflow)