"""
采用Transformer裁剪后,剪枝后生成的文件夹内是不包含vocab.txt文件的,
因此需要把源文件夹内的vocab.txt文件夹复制粘贴过去,防止报错
"""
导入第三方库包
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import torch
import transformers
import random
from tqdm import tqdm
device = "cuda" if torch.cuda.is_available() else "cpu"
D:\Environment\Anconda\envs\py388\lib\site-packages\tqdm-4.63.0-py3.8.egg\tqdm\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
torch.cuda.empty_cache()
import os
import datetime
def printbar():
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
数据预处理
def read_imdb_split(split_dir):
texts = []
labels = []
spilt_data=pd.read_csv(split_dir,encoding='utf-8')
spilt_data.columns=['label','text']
texts=list(spilt_data.text)
labels=list(spilt_data.label)
return texts, labels
all_texts, all_labels = read_imdb_split('expri.csv')
len(all_texts)
125
数据分析
df=pd.read_csv('expri.csv',encoding='utf-8')
plt.hist(df['text'].apply(lambda x: min(len(x.split()), 1000)), bins=20)
plt.ylabel("Number of texts")
plt.xlabel("Word count")
print(f"average word count: {np.mean(df['text'].apply(lambda x: len(x.split())))}")
average word count: 214.544
数据处理
random_seed = 0
numpy_seed = 1
torch_seed = 2
cuda_seed = 3
random.seed(random_seed)
np.random.seed(numpy_seed)
torch.manual_seed(torch_seed)
torch.cuda.manual_seed_all(cuda_seed)
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_labels, val_labels = train_test_split(all_texts,
all_labels, test_size=.2,random_state=random_seed)
train_texts, test_texts, train_labels, test_labels = train_test_split(train_texts,
train_labels, test_size=.3,random_state=random_seed)
len(train_texts),len(test_texts),len(val_texts)
(70, 30, 25)
模型搭建
model_path='./pruned_models\\pruned_V5151H8.0F2048'
from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained(model_path)
maxlen=20
train_encodings = tokenizer(train_texts,
padding='max_length',
truncation=True,
max_length=maxlen,
return_tensors='pt')
val_encodings = tokenizer(val_texts,
padding='max_length',
truncation=True,
max_length=maxlen,
return_tensors='pt')
test_encodings = tokenizer(test_texts,
padding='max_length',
truncation=True,
max_length=maxlen,
return_tensors='pt')
all_encodings = tokenizer(all_texts,
padding='max_length',
truncation=True,
max_length=maxlen,
return_tensors='pt')
import gc
gc.collect()
24
class IMDbDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_dataset = IMDbDataset(train_encodings, train_labels)
val_dataset = IMDbDataset(val_encodings, val_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)
all_dataset = IMDbDataset(all_encodings, all_labels)
len(train_labels),len(val_labels),len(test_labels)
(70, 25, 30)
from torch.utils.data import DataLoader
train_data_loader = DataLoader(
dataset = train_dataset,
batch_size=4,
shuffle=True
)
val_data_loader = DataLoader(
dataset = val_dataset,
batch_size=4,
shuffle=True
)
test_data_loader = DataLoader(
dataset = test_dataset,
batch_size=4,
shuffle=True
)
all_data_loader = DataLoader(
dataset = all_dataset,
batch_size=4,
shuffle=True
)
模型训练
from transformers import BertForSequenceClassification
model_path
'./pruned_models\\pruned_V5151H8.0F2048'
model = BertForSequenceClassification.from_pretrained(model_path)
model
BertForSequenceClassification(
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(5151, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=512, bias=True)
(key): Linear(in_features=768, out_features=512, bias=True)
(value): Linear(in_features=768, out_features=512, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=512, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=2048, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=2048, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
(dropout): Dropout(p=0.1, inplace=False)
(classifier): Linear(in_features=768, out_features=2, bias=True)
)
import gc
gc.collect()
447
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
loss_func = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=model.parameters(),lr = 0.01)
metric_func = accuracy_score
metric_name = "accuracy"
def train_epoch(tmp_model,dataloader,tmp_op,epoch):
loss_function=torch.nn.CrossEntropyLoss()
tmp_model.train()
tmp_model.zero_grad()
total_loss = 0.0
total_metric=0.0
preds = []
labels = []
for step,batch in enumerate(dataloader,1):
tmp_op.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
label = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=label)
loss = outputs[0]
logits=outputs[1]
total_loss += float(loss.item())
pred = torch.argmax(logits, dim=-1)
preds.extend(pred.cpu().tolist())
labels.extend(batch['labels'].cpu().tolist())
metric = accuracy_score(preds, labels)
total_metric += float(metric.item())
loss.requires_grad_(True)
tmp_op.step()
return total_loss/step, total_metric/step
def evaluate(tmp_model,dataloader, split, post_evaluate_hook=None):
preds = []
labels = []
tmp_model.eval()
val_total_loss = 0.0
val_total_metric=0.0
with torch.no_grad():
for step,batch in enumerate(dataloader,1):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
label = batch['labels'].to(device)
outputs = tmp_model(input_ids, attention_mask=attention_mask, labels=label)
loss = outputs[0]
logits=outputs[1]
pred = torch.argmax(logits, dim=-1)
preds.extend(pred.cpu().tolist())
labels.extend(batch['labels'].cpu().tolist())
val_total_loss += loss.item()
metric = accuracy_score(preds, labels)
val_total_metric += float(metric.item())
tmp_model.train()
return val_total_loss/step,val_total_metric/step
model.device
device(type='cpu')
model=model.to(device)
model.device
model_path
'./pruned_models\\pruned_V5151H8.0F2048'
epochs = 10
dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name])
print("Start Training...")
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("=========="*8 + "%s"%nowtime)
for epoch in range(1,epochs+1):
train_loss,train_metric= train_epoch(model,train_data_loader,optimizer,epoch)
val_loss,val_metric= evaluate(model,val_data_loader, "Valid")
info = (epoch, train_loss, train_metric, val_loss,val_metric)
dfhistory.loc[epoch-1] = info
print(("\nEPOCH = %d, loss = %.4f,"+ metric_name + \
" = %.4f, val_loss = %.4f, "+"val_"+ metric_name+" = %.4f")
%info)
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)
print('Finished Training...')
Start Training...
================================================================================2022-05-03 13:11:46
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 1, loss = 0.7294,accuracy = 0.3827, val_loss = 0.7024, val_accuracy = 0.4563
================================================================================2022-05-03 13:11:47
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 2, loss = 0.7353,accuracy = 0.4570, val_loss = 0.7366, val_accuracy = 0.4277
================================================================================2022-05-03 13:11:48
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 3, loss = 0.7322,accuracy = 0.3766, val_loss = 0.7036, val_accuracy = 0.4861
================================================================================2022-05-03 13:11:48
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 4, loss = 0.7159,accuracy = 0.4236, val_loss = 0.7316, val_accuracy = 0.5212
================================================================================2022-05-03 13:11:48
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 5, loss = 0.7316,accuracy = 0.4740, val_loss = 0.7376, val_accuracy = 0.2765
================================================================================2022-05-03 13:11:49
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 6, loss = 0.7245,accuracy = 0.4573, val_loss = 0.7365, val_accuracy = 0.3390
================================================================================2022-05-03 13:11:49
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 7, loss = 0.7216,accuracy = 0.3723, val_loss = 0.7067, val_accuracy = 0.2498
================================================================================2022-05-03 13:11:49
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 8, loss = 0.7259,accuracy = 0.4660, val_loss = 0.7047, val_accuracy = 0.4563
================================================================================2022-05-03 13:11:50
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
EPOCH = 9, loss = 0.7378,accuracy = 0.4114, val_loss = 0.7030, val_accuracy = 0.3432
================================================================================2022-05-03 13:11:50
EPOCH = 10, loss = 0.7182,accuracy = 0.4381, val_loss = 0.7027, val_accuracy = 0.3599
================================================================================2022-05-03 13:11:50
Finished Training...
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
C:\Users\22274\AppData\Local\Temp/ipykernel_8528/829142431.py:7: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
dfhistory
|
epoch |
loss |
accuracy |
val_loss |
val_accuracy |
0 |
1.0 |
0.729363 |
0.382744 |
0.702421 |
0.456310 |
1 |
2.0 |
0.735271 |
0.456967 |
0.736602 |
0.427738 |
2 |
3.0 |
0.732246 |
0.376564 |
0.703561 |
0.486071 |
3 |
4.0 |
0.715858 |
0.423648 |
0.731635 |
0.521190 |
4 |
5.0 |
0.731573 |
0.473982 |
0.737554 |
0.276548 |
5 |
6.0 |
0.724516 |
0.457281 |
0.736454 |
0.339048 |
6 |
7.0 |
0.721559 |
0.372274 |
0.706717 |
0.249762 |
7 |
8.0 |
0.725947 |
0.465975 |
0.704716 |
0.456310 |
8 |
9.0 |
0.737809 |
0.411404 |
0.703005 |
0.343214 |
9 |
10.0 |
0.718201 |
0.438141 |
0.702698 |
0.359881 |
模型评估
dfhistory
|
epoch |
loss |
accuracy |
val_loss |
val_accuracy |
0 |
1.0 |
0.729363 |
0.382744 |
0.702421 |
0.456310 |
1 |
2.0 |
0.735271 |
0.456967 |
0.736602 |
0.427738 |
2 |
3.0 |
0.732246 |
0.376564 |
0.703561 |
0.486071 |
3 |
4.0 |
0.715858 |
0.423648 |
0.731635 |
0.521190 |
4 |
5.0 |
0.731573 |
0.473982 |
0.737554 |
0.276548 |
5 |
6.0 |
0.724516 |
0.457281 |
0.736454 |
0.339048 |
6 |
7.0 |
0.721559 |
0.372274 |
0.706717 |
0.249762 |
7 |
8.0 |
0.725947 |
0.465975 |
0.704716 |
0.456310 |
8 |
9.0 |
0.737809 |
0.411404 |
0.703005 |
0.343214 |
9 |
10.0 |
0.718201 |
0.438141 |
0.702698 |
0.359881 |
dfhistory_path='history.csv'
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
def plot_metric(dfhistory, metric):
train_metrics = dfhistory[metric]
val_metrics = dfhistory['val_'+metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.plot(epochs, val_metrics, 'ro-')
plt.title('Training and validation '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric, 'val_'+metric])
plt.show()
plot_metric(dfhistory,"loss")
plot_metric(dfhistory,"accuracy")
模型剪枝
from textpruner import VocabularyPruner
from textpruner import GeneralConfig, VocabularyPruningConfig, TransformerPruningConfig
from textpruner import VocabularyPruner, TransformerPruner, PipelinePruner
general_config = GeneralConfig(use_device='auto',output_dir='./pruned_models')
vocabulary_pruning_config = VocabularyPruningConfig(min_count=1,prune_lm_head='auto')
transformer_pruning_config = TransformerPruningConfig(
target_ffn_size=2048,
target_num_of_heads=8,
pruning_method='iterative',
n_iters=4)
剪枝裁剪
pruner = VocabularyPruner(model, tokenizer,
vocabulary_pruning_config=vocabulary_pruning_config,
general_config=general_config)
pruner.prune(dataiter=all_texts)
Transformer裁剪
pruner1 = TransformerPruner(model,transformer_pruning_config=transformer_pruning_config
,general_config=general_config)
pruner1.prune(dataloader=all_data_loader, save_model=True)
流水线裁剪
model_path
from textpruner import PipelinePruner, TransformerPruningConfig
pruner2 = PipelinePruner(model, tokenizer, transformer_pruning_config=transformer_pruning_config,
vocabulary_pruning_config=vocabulary_pruning_config,
general_config=general_config)
pruner2.prune(dataloader=all_data_loader, dataiter=all_texts, save_model=True)
模型推理
from transformers import BertForMaskedLM
import textpruner
import torch
model = BertForMaskedLM.from_pretrained(model_path)
print("Model summary:")
print(textpruner.summary(model,max_level=3))
Some weights of the model checkpoint at ./pruned_models\pruned_V5151H8.0F2048 were not used when initializing BertForMaskedLM: ['classifier.bias', 'classifier.weight']
- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of BertForMaskedLM were not initialized from the model checkpoint at ./pruned_models\pruned_V5151H8.0F2048 and are newly initialized: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Model summary:
LAYER NAME #PARAMS RATIO MEM(MB)
--model: 61,671,455 100.00% 235.26
--bert: 61,074,176 99.03% 232.98
--embeddings: 4,352,768 7.06% 16.61
--position_ids: 512 0.00% 0.00
--word_embeddings: 3,955,968 6.41% 15.09
--position_embeddings: 393,216 0.64% 1.50
--token_type_embeddings: 1,536 0.00% 0.01
--LayerNorm: 1,536 0.00% 0.01
--encoder
--layer: 56,721,408 91.97% 216.38
--cls
--predictions(partially shared): 597,279 0.97% 2.28
--bias: 5,151 0.01% 0.02
--transform: 592,128 0.96% 2.26
--decoder(shared): 0 0.00% 0.00