谈谈转行数据分析工作的心得

640?wx_fmt=1

谈谈转行数据分析工作的心得_第1张图片

我在2018年底开始接触Python和数据分析,感觉有很多应用空间有待开发,可以作为工作的一个方向。自学了一段时间后,发现头绪比较多,就想报一家培训机构系统学习下,在网上搜索到了CDA,感觉课程从软件编程技术和机器学习理论两个方面从入门到提高都比较系统,于是最终选择了CDA。完成全部课程后,并最终找到风控建模的工作岗位。

学习心得方面,结合我目前的工作说一下吧,EXCEL比较重要,在处理数据样例时用的最多,数据透视表,数组,聚合函数,文本处理函数使用最多。MYSQL目前用的不多,但是处理数据的逻辑基本出自MYSQL的学习。数理统计虽然比较基础和枯燥,但非常重要,尤其是做回归模型的步骤建议重点掌握。PYTHON中文本的处理,Panda和Numpy,绝对是每天陪伴你的工具,建议在熟悉PYTHON基本操作后重点看这方面,多做练习。机器学习算法我建议以理论理解优先,会发现在理解了理论后,对各种算法的python实现可以借助网络资源来实现,上手会比较快。案例课很重要,一定要自己动手实现一遍,一是数据软件处理的基本技巧,在日常工作中用处很大,二是分析的思路,刚开始可能没思路,可以先照猫画虎,多练几遍就会有感觉。

找工作方面,数据分析应用方向多,不同方向侧重点不同,建议多掌握CDA给的各种总结,我主要针对的是风控建模方向,应用是银行中小企业和个人贷款的审核与贷后管理,主要应用逻辑回归和决策树目前,我当时面试初面比较简单,简单聊了过往工作经历和对银行风控建模的理解,由于之前确实没有相关工作经验,主要强调自身的学习能力和职业规划。然后是笔试,发了一系列数据,要求写一个模型开发报告,这时用到了评分卡案例课的内容,完全按照老师讲课思路来写的。终面是模型总监,完全技术向的面试,主要涉及逻辑回归建模过程,如何分箱,IV值计算,变量选择,模型解释及评价,AUC,KS,评分卡打分,决策树,gini系数,信息熵和提升算法,交叉验证。还是建议在理论上要吃透,然后尽可能结合实际业务逻辑去解释,比如一个人贷款余额比较多,违约风险高,woe值会随余额提高由正转负等。最后csdn,知乎和简书上有大量相关到位总结,多看看很有用。

CDA数据分析就业班课程是专门为想要从事数据分析类工作所研发的精品课程,该课程包含Excel、Power BI 、Tableau等业务数据分析相关内容以及数据挖掘的数学基础、SPSS软件基础、运用SPSS构建统计模型、Python基础、数据清洗、网络爬虫、Python机器学习等数据挖掘和机器学习相关内容,并结合评分卡、电商、零售等实战项目案例课程,帮助学员迅速掌握业务数据分析、数据挖掘、机器学习相关岗位技能,学员毕业后可推荐相关工作岗位。

谈谈转行数据分析工作的心得_第2张图片

近期开课信息

七十二期CDA数据分析就业班

2019年9月15日_上海/成都/重庆开课

七十三期CDA数据分析就业班

2019年10月20日_深圳开课

七十四期CDA数据分析就业班

2019年10月27日_北京开课

七十五期CDA数据分析就业班

2019年11月10日_广州开课

在线咨询

640?wx_fmt=gif

640?wx_fmt=jpeg

CDA 课程咨询丨史老师

联系电话:18080942131

640?wx_fmt=jpeg

扫描二维码

你可能感兴趣的:(谈谈转行数据分析工作的心得)