- python实战(十五)——中文手写体数字图像CNN分类
CM莫问
python实战深度学习pythoncnn人工智能深度学习算法图像分类手写体识别
一、任务背景本次python实战,我们使用来自Kaggle的数据集《ChineseMNIST》进行CNN分类建模,不同于经典的MNIST数据集,我们这次使用的数据集是汉字手写体数字。除了常规的汉字“零”到“九”之外还多了“十”、“百”、“千”、“万”、“亿”,共15种汉字数字。二、python建模1、数据读取首先,读取jpg数据文件,可以看到总共有15000张图像数据。importpandasas
- 【数据挖掘实战】 房价预测
机器学习司猫白
数据挖掘人工智能python机器学习
本次对kaggle中的入门级数据集,房价回归数据集进行数据挖掘,预测房屋价格。本人主页:机器学习司猫白机器学习专栏:机器学习实战PyTorch入门专栏:PyTorch入门深度学习实战:深度学习ok,话不多说,我们进入正题吧概述本次竞赛有79个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。数据集描述本次数据集已经上传,大家可以自行下载尝试文件说明train.csv-
- kaggle入门级竞赛Spaceship Titanic LIghtgbm+Optuna调参
机器学习司猫白
机器学习实战机器学习python集成学习scikit-learn
kaggle入门级竞赛SpaceshipTitanic简介数据介绍数据集描述数据字段描述train.csv-约三分之二(~8700)乘客的个人记录,用作培训数据。test.csv-剩余三分之一(~4300)乘客的个人记录,用作测试数据。您的任务是预测Transported该集合中乘客的价值。Sample_submission.csv-格式正确的提交文件。代码分类变量optuna算法简介简介欢迎来到
- 从Web2到Web3:区块链推动的数字进化之路
清 晨
web3web3去中心化人工智能隐私保护
互联网的演变从最初的Web1到如今的Web3,代表了技术和用户需求的深刻变化。Web3是一个基于区块链技术的全新互联网架构,旨在解决传统互联网(即Web2)中数据集中化和隐私保护等问题。通过去中心化的机制,Web3不仅能够增强数据安全性,还能够赋予用户更高的自主权。本文将从Web2和Web3的差异、区块链的作用以及Web3未来的潜力三个角度进行探讨。Web2:社交与互动的新时代Web2,也被称为社
- Scala内建循环——for循环
Word的妈呀
scala开发语言后端
1.for循环格式for(循环变量<-数据集){//循环体代码}eg:vararray=1to5//12345vararray2=1unitl5//12345for(i<-array){println(i)}2.循环守卫在循环中添加条件,如果条件成立就执行格式:for(循环变量<-数据集ifcondition1;ifcondiition2...){循环体}3.循环的返回值valret=for(i<
- 大数据的一些基本概念
weixin_49536779
大数据数据分析数据库python
首先,大数据是什么?大数据是指数据集规模巨大且复杂,传统的数据处理软件无法高效处理它们。它是非常大的数据集。这种复杂性可能来自于数据的“3V”特性:体量(Volume)、多样性(Variety)和速度(Velocity)。体量(Volume)首先,什么是体量?体量指的是以PB(Petabytes)为单位的数据量,甚至是EB(Exabytes)。这种数据量远大于GB(Gigabytes)或TB(Te
- 使用Airbyte实现数据集成的详细指南
dagGAIYD
python
Airbyte是一个功能强大的数据集成平台,专门用于从API、数据库和文件构建到仓库和数据湖的ELT(Extract,Load,Transform)管道。凭借庞大的ELT连接器目录,Airbyte为数据仓库和数据库提供了广泛的支持。本文将详细介绍如何安装和使用Airbyte,特别是在Python环境中利用langchain-airbyte库进行数据集成。技术背景介绍在现代数据驱动的应用中,数据集成
- 使用FAISS进行高效相似性搜索与向量存储
dagGAIYD
faisspython
技术背景介绍FacebookAISimilaritySearch(FAISS)是一个用于高效相似性搜索和稠密向量聚类的库。它能够在任意大小的向量集合中进行搜索,即使这些集合可能无法完全加载到内存中。FAISS提供了评估与参数调优的支持代码,使得它在处理大型数据集时非常实用。核心原理解析FAISS的核心在于其利用高效的数据结构和算法,如倒排文件和压缩索引,使得大量向量的相似性搜索成为可能。它主要通过
- 大型集团企业IT信息化(管理架构、应用架构、技术架构)战略规划方案
公众号:优享智库
数字化转型数据治理主数据数据仓库架构微服务数据挖掘大数据人工智能
集团企业IT信息化(管理架构、应用架构、技术架构)战略规划方案IT信息化现状及需求分析集团企业业务概况与发展趋势现有IT基础设施及应用系统评估业务流程优化与整合需求信息安全与风险管理要求管理架构规划与设计组织结构调整与优化建议岗位职责划分与协作机制建立决策支持体系构建及实施策略持续改进机制设置和监控指标应用架构规划与实施策略核心应用系统选型及部署方案数据集成、共享和交换平台设计业务流程自动化、智能
- WebRover :一个功能强大的 Python 库,用于从 Web 内容生成高质量的数据集。
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 数据库存储过程和QT数据库访问并获取返回值的几种方式
沐雨潇竹
QT技术数据库qtoracle
数据库存储过程和QT数据库访问并获取返回值的几种方式前言说明:在Qt中使用QSqlQuery执行存储过程时,如果存储过程有RETURN值,但执行成功后没有返回任何结果,这通常是因为存储过程的RETURN值并不会像SELECT查询那样作为数据集返回。存储过程中的RETURN语句只是返回一个整数值,而不是一个查询结果集,因此不会被QSqlQuery直接捕获到结果集中。在SQLServer或MySQL等
- 使用ModelScope实现高效句嵌入生成
dagGAIYD
python
技术背景介绍在自然语言处理(NLP)任务中,向量化文本(嵌入)是许多下游任务(如语义搜索、文本分类、问答系统等)的核心步骤之一。通过将文本转换为密集向量表示,我们可以在高维向量空间中构建更加高效的表示和检索算法。ModelScope是阿里云开源的一个模型和数据集管理平台,提供了大量预训练模型,涵盖了各种领域和任务。ModelScopeEmbeddings是一个与LangChain社区集成的工具类,
- WebRover: 专为训练大型语言模型和 AI 应用程序而设计的 Python 库
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- 阿里异构离线数据同步工具/平台DataX
boonya
#开源观察#数据迁移#Dataxbigdatahbase数据库
目录DataX商业版本FeaturesDataX详细介绍QuickStartSupportDataChannels阿里云DataWorks数据集成我要开发新的插件项目成员Licensehttps://github.com/alibaba/DataXDataX是阿里云DataWorks数据集成的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX实现了包括MySQL、Oracle
- OpenCompass评测大模型
辣条少年
人工智能
OpenCompass简介上海人工智能实验室科学家团队于2024.01.30正式发布了大模型开源开放评测体系“司南”(OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。OpenCompass平台广泛支持超过100种HuggingFace和API模型,融合了100多个数据集,包含约40万个问题,用以从八个维度评估模型。其高效的分布式评估系统能够快速且全面地评估十亿级规
- 数据产品交易市场|2024年度监测报告
数据
根据遇见数据集平台监测数据分析,截止2024年12月底,数据交易市场总披露交易金额突破550亿元,总挂牌数据产品超4万个。超2000家企业供应数据,其中在多家交易所上架的企业占比17%。想要了解更多信息,请打开:五号数据雷达https://www.5radar.com/dplists/news/137462
- 论文阅读--Qwen2&2.5技术报告
__如果
论文阅读qwen
Qwen21引言所有模型都是在超过7trilliontoken(7万亿)的高质量、大规模数据集上预训练的2Tokenizer&Model2.1Tokenizer沿用Qwen(Bai等人,2023a)的做法,我们采用了基于字节级字节对编码的相同Tokenizer所有大小的模型都采用一个共有词汇表,包含151,643个常规词元和3个控制词元2.2模型架构基于Transformer架构的大型语言模型,具
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- MDX语言的语法
沈霁晨
包罗万象golang开发语言后端
MDX(MultidimensionalExpressions)语言是一种用于多维数据库的查询语言,广泛应用于微软的SQLServerAnalysisServices(SSAS)中。MDX的设计初衷是为了对多维数据进行复杂的查询和分析,尤其是在数据仓库和商业智能领域。本文将从MDX的基础知识、语法结构、常用函数以及实际应用等多方面进行详细探讨。一、MDX语言的基础知识MDX语言的核心是对多维数据集
- 昇腾910-PyTorch 实现 GoogleNet图像分类
深度学习图像识别
PyTorch实现GoogleNet用于图像分类本实验主要介绍了如何在昇腾上,使用pytorch对经典的GoogleNet模型在公开的CIFAR10数据集进行分类训练的实战讲解。内容包括GoogleNet模型创新点介绍、GoogleNet网络架构剖析与GoogleNet网络模型代码实战分析等等。本实验的目录结构安排如下所示:GoogleNet网络模型创新点介绍GoogleNet的网络架构剖析Goo
- 告别 Excel,拥抱 R 语言:开启数据分析新时代
码农老关【关东升】
excelr语言数据分析
在这个数据驱动的时代,数据分析已然成为每个行业的核心竞争力。从市场营销到金融领域,从医疗健康到教育行业,数据无处不在,深刻影响着每一个决策。然而,面对日益复杂的数据集,单纯依靠Excel进行分析,已渐渐难以满足不断增长的需求。为何弃Excel选R语言?强大的数据处理能力Excel简单易用,但其处理大数据集时,效率与能力着实有限。R语言作为专业的数据分析工具,处理成千上万的数据行不在话下,还支持丰富
- 白鲸数据集成调度和集成系统与统信软件通过互认认证,共促国产软硬件生态发展
数据库
在国产软硬件生态建设的征程中,又迎来重要成果。北京白鲸开源科技有限公司与统信软件技术有限公司联合宣布,白鲸数据集成系统V2.6和数据调度系统V2.6分别在统信服务器操作系统V25上通过了严格的功能与兼容性测试,获得了统信软件的互认证明。白鲸开源数据调度系统V2.6与统信服务器操作系统V25互认证明白鲸开源数据集成系统V2.6与统信服务器操作系统V25互认证明此次认证涵盖了众多主流的国产CPU平台,
- Hadoop是什么,怎么部署安装?
狮歌~资深攻城狮
hadoop大数据分布式
Hadoop是什么?Hadoop是一个由Apache基金会开发的开源分布式系统基础架构,主要用于处理和存储大规模数据集。它包括两个核心组件:Hadoop分布式文件系统(HDFS)和HadoopYARN(YetAnotherResourceNegotiator)。HDFS提供了一个高吞吐量的数据访问接口,允许用户在集群中存储大量数据。它通过将文件分割成多个块并分布在集群的不同节点上来实现高可靠性和可
- 从MySQL迁移到PostgreSQL的完整指南
m0_74825718
面试学习路线阿里巴巴mysqlpostgresql数据库
1.引言在现代数据库管理中,选择合适的数据库系统对业务的成功至关重要。随着企业数据量的增长和对性能要求的提高,许多公司开始考虑从MySQL迁移到PostgreSQL。这一迁移的主要原因包括以下几个方面:1.1性能和扩展性PostgreSQL以其高性能和优秀的扩展能力而闻名。它支持复杂的查询优化和并发控制,能够更高效地处理大规模数据。与MySQL相比,PostgreSQL在处理复杂查询和大数据集时表
- 如何学习爬虫技术:从入门到实践的全面指南
CodeJourney.
学习爬虫
一、引言在当今数字化时代,网络上的数据量呈爆炸式增长,能够高效地获取和处理这些数据变得愈发重要。爬虫技术作为一种从网页中自动提取信息的手段,在各个领域都有着广泛的应用,无论是数据分析、机器学习的数据集构建,还是市场调研、价格监测等商业场景,掌握爬虫技术都能为你打开一扇获取丰富信息资源的大门。然而,对于初学者来说,面对琳琅满目的工具和复杂的网络环境,可能会感到无从下手。本文将带你逐步深入了解爬虫技术
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- 跨平台物联网漏洞挖掘算法评估框架设计与实现项目概述与调整
XLYcmy
漏洞挖掘网络安全漏洞挖掘物联网跨架构静态检测项目报告二进制
1.1项目研究目的与创新点复述1.1.1.研究目的本研究的研究目的主要有以下两个:1、基于此领域的相关方法,通过实验找出各个架构的最优方法2、通过设计实验,比较跨架构解决方案和各架构最优方法组合解决方案在函数识别、漏洞挖掘上的优劣性1.1.2.创新点1、通过构建数据集和设计实验,本研究汇总性地得到各个架构下物联网漏洞挖掘静态方法的最优方法2、在以往的研究中,只是做了某个架构内或者跨架构方法之间的比
- 【大模型应用开发 动手做AI Agent】AutoGen
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】AutoGen关键词:自动生成(AutoGeneration)AI代理(Agent)大型语言模型AutoGen框架自定义任务生成1.背景介绍1.1问题的由来在当今的AI领域,大型语言模型因其强大的文本生成能力而受到广泛关注。这些模型通常在大规模文本数据集上进行预训练,以便能够生成与上下文相关的高质量文本。然而,对于特定领域或特定任务的需求,往往需要对这些通用模
- python3.6 split用法_对sklearn的使用之数据集的拆分与训练详解(python3.6)
weixin_39849054
python3.6split用法
研修课上讲了两个例子,融合一下。主要演示大致的过程:导入->拆分->训练->模型报告以及几个重要问题:①标签二值化②网格搜索法调参③k折交叉验证④增加噪声特征(之前涉及)fromsklearnimportdatasets#从cross_validation导入会出现warning,说已弃用fromsklearn.model_selectionimporttrain-test_splitfromsk
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found