同理,可以根据结果的规律写出式子(2)的第二项:
∂ ∂ m x [ [ ( m x u 2 x + m y u 2 y + m z u 2 z ) ( m x u 3 x + m y u 3 y + m z u 3 z ) ] 2 ] \frac{\partial{}}{\partial{m_x}}[[(m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) (m_x u_{3x}+m_y u_{3y}+m_z u_{3z})]^2] ∂mx∂[[(mxu2x+myu2y+mzu2z)(mxu3x+myu3y+mzu3z)]2]
= 2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 x + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 x ] =2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}] =2[(m⋅u2)(m⋅u3)2u2x+(m⋅u2)2(m⋅u3)u3x]
同理,可以根据结果的规律写出式子(2)的第三项:
∂ ∂ m x [ [ ( m x u 3 x + m y u 3 y + m z u 3 z ) ( m x u 1 x + m y u 1 y + m z u 1 z ) ] 2 ] \frac{\partial{}}{\partial{m_x}}[[(m_x u_{3x}+m_y u_{3y}+m_z u_{3z}) (m_x u_{1x}+m_y u_{1y}+m_z u_{1z})]^2] ∂mx∂[[(mxu3x+myu3y+mzu3z)(mxu1x+myu1y+mzu1z)]2]
= 2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 x + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 x ] =2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}] =2[(m⋅u3)(m⋅u1)2u3x+(m⋅u3)2(m⋅u1)u1x]
将以上三项带回式子(2)合并得到式子(2)的结果,即式子(1)的第一项:
∂ ∂ m x [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] x ^ \frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{x} ∂mx∂[−Kc[[(m⋅u1)(m⋅u2)]2+[(m⋅u2)(m⋅u3)]2+[(m⋅u3)(m⋅u1)]2]]x^
= − K c ( =-K_c \Bigg( =−Kc(
2 [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 x + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 x ] + 2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1x} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2x}]+ 2[(m⋅u1)(m⋅u2)2u1x+(m⋅u1)2(m⋅u2)u2x]+
2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 x + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 x ] + 2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}]+ 2[(m⋅u2)(m⋅u3)2u2x+(m⋅u2)2(m⋅u3)u3x]+
2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 x + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 x ] 2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}] 2[(m⋅u3)(m⋅u1)2u3x+(m⋅u3)2(m⋅u1)u1x]
) x ^ \Bigg)\hat{x} )x^
同理,可以根据第一项结果的规律写出式子(1)的第二项:
∂ ∂ m y [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] y ^ \frac{\partial{}}{\partial{m_y}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{y} ∂my∂[−Kc[[(m⋅u1)(m⋅u2)]2+[(m⋅u2)(m⋅u3)]2+[(m⋅u3)(m⋅u1)]2]]y^
= − K c ( =-K_c \Bigg( =−Kc(
2 [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 y + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 y ] + 2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1y} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2y}]+ 2[(m⋅u1)(m⋅u2)2u1y+(m⋅u1)2(m⋅u2)u2y]+
2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 y + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 y ] + 2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2y} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3y}]+ 2[(m⋅u2)(m⋅u3)2u2y+(m⋅u2)2(m⋅u3)u3y]+
2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 y + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 y ] 2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3y} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1y}] 2[(m⋅u3)(m⋅u1)2u3y+(m⋅u3)2(m⋅u1)u1y]
) y ^ \Bigg)\hat{y} )y^
同理,可以根据第一项结果的规律写出式子(1)的第三项:
∂ ∂ m z [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] z ^ \frac{\partial{}}{\partial{m_z}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{z} ∂mz∂[−Kc[[(m⋅u1)(m⋅u2)]2+[(m⋅u2)(m⋅u3)]2+[(m⋅u3)(m⋅u1)]2]]z^
= − K c ( =-K_c \Bigg( =−Kc(
2 [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 z + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 z ] + 2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1z} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2z}]+ 2[(m⋅u1)(m⋅u2)2u1z+(m⋅u1)2(m⋅u2)u2z]+
2 [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 z + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 z ] + 2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2z} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3z}]+ 2[(m⋅u2)(m⋅u3)2u2z+(m⋅u2)2(m⋅u3)u3z]+
2 [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 3 z + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 z ] 2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3z} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1z}] 2[(m⋅u3)(m⋅u1)2u3z+(m⋅u3)2(m⋅u1)u1z]
) z ^ \Bigg)\hat{z} )z^
将以上三项带回式子(1)合并得到磁晶立方各向异性能的有效场: H c u b i c → \overrightarrow{H_{cubic}} Hcubic:
= − 2 K c − u 0 M s ( ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 ( u 1 x x ^ + u 1 y y ^ + u 1 z z ^ ) + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) ( u 2 x x ^ + u 2 y y ^ + u 2 z z ^ ) =\frac{-2K_c}{{-u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z}) +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z}) =−u0Ms−2Kc((m⋅u1)(m⋅u2)2(u1xx^+u1yy^+u1zz^)+(m⋅u1)2(m⋅u2)(u2xx^+u2yy^+u2zz^)
+ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 ( u 2 x x ^ + u 2 y y ^ + u 2 z z ^ ) + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) ( u 3 x x ^ + u 3 y y ^ + u 3 z z ^ ) +(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z}) +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z}) +(m⋅u2)(m⋅u3)2(u2xx^+u2yy^+u2zz^)+(m⋅u2)2(m⋅u3)(u3xx^+u3yy^+u3zz^)
+ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 ( u 3 x x ^ + u 3 y y ^ + u 3 z z ^ ) + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) ( u 1 x x ^ + u 1 y y ^ + u 1 z z ^ ) ) +(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z}) +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z})\Bigg) +(m⋅u3)(m⋅u1)2(u3xx^+u3yy^+u3zz^)+(m⋅u3)2(m⋅u1)(u1xx^+u1yy^+u1zz^))
= 2 K c u 0 M s ( ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) 2 u 1 ⃗ + ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) u 2 ⃗ =\frac{2K_c}{{u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 \vec{u_1} +(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) \vec{u_2} =u0Ms2Kc((m⋅u1)(m⋅u2)2u1+(m⋅u1)2(m⋅u2)u2
+ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) 2 u 2 ⃗ + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) u 3 ⃗ +(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 \vec{u_2} +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) \vec{u_3} +(m⋅u2)(m⋅u3)2u2+(m⋅u2)2(m⋅u3)u3
+ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) 2 u 2 ⃗ + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) u 1 ⃗ ) +(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 \vec{u_2} +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) \vec{u_1}\Bigg) +(m⋅u3)(m⋅u1)2u2+(m⋅u3)2(m⋅u1)u1)
= 2 K c u 0 M s ( ( m ⃗ ⋅ u 1 ⃗ ) [ ( m ⃗ ⋅ u 2 ⃗ ) 2 + ( m ⃗ ⋅ u 3 ⃗ ) 2 ] u 1 ⃗ =\frac{2K_c}{{u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1})[(\vec{m} \cdot \vec{u_2})^2 + (\vec{m} \cdot \vec{u_3})^2] \vec{u_1} =u0Ms2Kc((m⋅u1)[(m⋅u2)2+(m⋅u3)2]u1
+ ( m ⃗ ⋅ u 2 ⃗ ) [ ( m ⃗ ⋅ u 3 ⃗ ) 2 + ( m ⃗ ⋅ u 1 ⃗ ) 2 ] u 2 ⃗ +(\vec{m} \cdot \vec{u_2})[(\vec{m} \cdot \vec{u_3})^2 + (\vec{m} \cdot \vec{u_1})^2] \vec{u_2} +(m⋅u2)[(m⋅u3)2+(m⋅u1)2]u2
+ ( m ⃗ ⋅ u 3 ⃗ ) [ ( m ⃗ ⋅ u 1 ⃗ ) 2 + ( m ⃗ ⋅ u 2 ⃗ ) 2 ] u 3 ⃗ ) +(\vec{m} \cdot \vec{u_3})[(\vec{m} \cdot \vec{u_1})^2 + (\vec{m} \cdot \vec{u_2})^2] \vec{u_3} \Bigg) +(m⋅u3)[(m⋅u1)2+(m⋅u2)2]u3)
@[TOC](文章目录)
<font color=#ff0000 >
雁来音信无凭,路遥归梦难成。李煜《清平乐别来春半》
font>
# 前言
在笔记06中为大家推荐了“ubermag”官网上的有关[微磁学公式的推导笔记](https://download.csdn.net/download/qq_43572058/86272578),按照老辈人的说法,微磁学相关公式的推导应该在我们入门后两个月内学会,但并不是每一个人都有着基本的数学素养,有的人面对这些数学式子就是头晕,比如我,,,好在近期闲来无事想着动纸笔比划一下,遇到的一些陌生的名词,陌生的导数,卡住的推导步骤等都会去网上翻一翻,于是总归学会了一点三脚猫的功夫了。
本文的内容就是根据几个微磁学基本能量密度公式来推导其有效场,这几个微磁学基本能量包括:交换能,塞曼能,界面DMI能,体DMI能,单轴各向异性能,立方各向异性能。这几个能量的能量密度公式是已知的,利用有效场的公式:
$$\overrightarrow{H_{eff}}
=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{any}}}{\delta{\overrightarrow{m}}}
$$
即可推导出每一项能量对应的有效场。式中:$u_0,M_s$ 分别表示真空磁导率和材料的饱和磁化强度;$\overrightarrow{m}=\overrightarrow{m(\vec{r})}=\frac{\overrightarrow{M(\vec{r})}}{M_s}$ 表示单位磁化强度(矢量场);$E_{any}$ 表示以上能量的能量密度(标量场);符号 $\delta$ 表示变分算子。
这里涉及到“变分”这个概念,我自己目前也不是很明白,但从网上查了一些言论描述如下:
设 $F=F(y),y=y(x)$,有所谓的 **函数的函数的导数** 表示为:
$$F^{\prime}_y=\frac{\delta{F}}{\delta{y}}$$
即
$$\frac{\delta{F}}{\delta{y}}=\frac{dF}{dy}或\frac{\partial{F}}{\partial{y}}$$
于是,有效场的式子变为了能量密度(标量场)对单位磁化强度(矢量)求偏导:
$$\overrightarrow{H_{eff}}
=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{any}}}{\partial{\overrightarrow{m}}}
$$
大家对这个式子都非常熟悉了,在大部分微磁学文章中,一般这个式子会出现在LLG方程的后面。不过,此处又出现了有难度的步骤,即标量场如何对矢量场求偏导呢?其实结合“梯度”的定义来看:
设有一个标量场 $\phi=\phi(x,y,z)$,一个矢量线元 $d\vec{l}$ ,则定义 $\phi$ 的梯度为:
$$grad\phi=\nabla{\phi}=\frac{d\phi}{d\vec{l}}=\frac{\partial{\phi}}{\partial{x}}\hat{x} + \frac{\partial{\phi}}{\partial{y}}\hat{y} + \frac{\partial{\phi}}{\partial{z}}\hat{z}$$
梯度是一个标量场对矢量求导,从而不难得到“有效场等于能量密度对单位磁化强度的梯度”这个结论,这句话也经常出现在许多毕业论文第二章的开头,此时我才明白其中的含义。
于是借助梯度的概念将有效场的式子展开:
$$\overrightarrow{H_{eff}}=\frac{1}{{-u_{0}}{M_s}}\nabla_{\vec{m}}{E_{any}}=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{any}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{any}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{any}}}{\partial{m_z}}\hat{z})$$
# 一、塞曼能的有效场
已知塞曼能的能量密度公式:
$$E_{zeeman}={-u_{0}}{M_s}(\vec{m} \cdot \vec{H})$$
其中:$\vec{H}=\overrightarrow{H(\vec{r})}$ 为外加磁场(矢量场),单位 A/m。那么可以得到塞曼能的有效场: $\overrightarrow{H_{zeeman}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{zeeman}}}{\delta{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{zeeman}}}{\partial{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{zeeman}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{zeeman}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{zeeman}}}{\partial{m_z}}\hat{z})$
$=\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{x} + \frac{\partial{}}{\partial{m_y}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{y} + \frac{\partial{}}{\partial{m_z}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{z})]$
$=\frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x} + \frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y} + \frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z}$ ***********************************************(式子 1)
其中 $\vec{m}$ 和 $\vec{H}$ 的点乘: $\vec{m} \cdot \vec{H} = m_xH_x + m_yH_y + m_zH_z$
带回式子(1)的第一项:
$\frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x}$
$=\frac{\partial{}}{\partial{m_x}}(m_xH_x + m_yH_y + m_zH_z) \hat{x}$
$=H_x \hat{x}$
同理,式子(1)的第二项:
$\frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y}$
$=\frac{\partial{}}{\partial{m_y}}(m_xH_x + m_yH_y + m_zH_z) \hat{y}$
$=H_y \hat{y}$
同理,式子(1)的第三项:
$\frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z}$
$=\frac{\partial{}}{\partial{m_z}}(m_xH_x + m_yH_y + m_zH_z) \hat{z}$
$=H_z \hat{z}$
最后合并这三项,式子(1)的结果为:
$\frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x} + \frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y} + \frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z}$
$=H_x \hat{x} + H_y \hat{y} + H_z \hat{z}$
$=\vec{H}$
这个推导结果表示塞曼能的有效场: $\overrightarrow{H_{zeeman}}$ 就等于外加磁场 $\vec{H}$。
而且由塞曼能的能量密度表达式可知,若已知任意微磁能量的有效场 $\overrightarrow{H^{any}_{eff}}$ 的情况下,那么它对应的能量密度表达式即为:
$$E_{any}={-u_{0}}{M_s}(\vec{m} \cdot \overrightarrow{H^{any}_{eff}})$$
# 二、交换能的有效场
已知交换能的能量密度公式:
$$E_{ex}=A[\vec{m} \cdot (\nabla^2{\vec{m}})] =A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2]$$
其中 $A$ 表示交换作用强度,单位 J/m,式中 $\nabla^2$ 是拉普拉斯算子,可以直接作用在标量场或者矢量场,此处作用在矢量场 $\vec{m}$ ,表示: $\nabla^2{\vec{m}}=\frac{\partial^2{m_{x}}}{\partial{x^2}}\hat{x} + \frac{\partial^2{m_{y}}}{\partial{y^2}}\hat{y} + \frac{\partial^2{m_{z}}}{\partial{z^2}}\hat{z}$ 。
交换能的能量密度公式还有一个简单的,特殊的“写法: $E_{ex}=A(\nabla{\vec{m}})^2$ ,之所以特殊,是因为我们都知道矢量微分算子 $\nabla$ 只能直接作用在标量场,而不能直接与矢量场结合(即只能通过点乘或叉乘的方式来与矢量场结合),同时这种简单的写法在许多文章中也是最流行的。
那么可以得到交换能的有效场:$\overrightarrow{H_{ex}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{ex}}}{\delta{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{ex}}}{\partial{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{ex}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{ex}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{ex}}}{\partial{m_z}}\hat{z})$
$=\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{x} + \frac{\partial{}}{\partial{m_y}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{y} + \frac{\partial{}}{\partial{m_z}}(A[(\nabla{m_z})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{z}]$ ***********************************************(式子 1)
其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$ ***********************************************(式子 2)
式子(2)里面的 $(\nabla{m_x})^2$
$=(\frac{\partial{m_{x}}}{\partial{x}}\hat{x} + \frac{\partial{m_{x}}}{\partial{y}}\hat{y} + \frac{\partial{m_{x}}}{\partial{z}}\hat{z})^2$
$=(\frac{\partial{m_{x}}}{\partial{x}})^2 + (\frac{\partial{m_{x}}}{\partial{y}})^2+ (\frac{\partial{m_{x}}}{\partial{z}})^2$
式子(2)里面的 $(\nabla{m_y})^2$
$=(\frac{\partial{m_{y}}}{\partial{x}}\hat{x} + \frac{\partial{m_{y}}}{\partial{y}}\hat{y} + \frac{\partial{m_{y}}}{\partial{z}}\hat{z})^2$
$=(\frac{\partial{m_{y}}}{\partial{x}})^2 + (\frac{\partial{m_{y}}}{\partial{y}})^2+ (\frac{\partial{m_{z}}}{\partial{z}})^2$
式子(2)里面的 $(\nabla{m_z})^2$
$=(\frac{\partial{m_{z}}}{\partial{x}}\hat{x} + \frac{\partial{m_{z}}}{\partial{y}}\hat{y} + \frac{\partial{m_{z}}}{\partial{z}}\hat{z})^2$
$=(\frac{\partial{m_{z}}}{\partial{x}})^2 + (\frac{\partial{m_{z}}}{\partial{y}})^2+ (\frac{\partial{m_{z}}}{\partial{z}})^2$
从三个式子的展开结果来看,显然, $(\nabla{m_x})^2$ 与变量 $m_x$ 有关,与 $m_y$ 和 $m_z$ 无关; $(\nabla{m_y})^2$ 与变量 $m_y$ 有关,与 $m_x$ 和 $m_z$ 无关; $(\nabla{m_z})^2$ 与变量 $m_z$ 有关,与 $m_x$ 和 $m_y$ 无关。
于是从式子(2)可以得到:$\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$
$=\frac{\partial{}}{\partial{m_x}}(A(\nabla{m_x})^2) + 0 +0$
$=A \frac{\partial{}}{\partial{m_x}}(\nabla{m_x})^2$
$=A \frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{x}})^2 + (\frac{\partial{m_{x}}}{\partial{y}})^2+ (\frac{\partial{m_{x}}}{\partial{z}})^2]$ ***********************************************(式子 3)
式子(3)中 $\frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{x}})^2]$
$=2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\partial{m_x}} (\frac{\partial{m_{x}}}{\partial{x}})$
$=2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\cancel{\partial{m_x}}} (\frac{\cancel{\partial{m_x}}}{\partial{x}})$
$=2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\partial{x}}$
式子(3)中 $\frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{y}})^2]$
$=2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\partial{m_x}} (\frac{\partial{m_{x}}}{\partial{y}})$
$=2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\cancel{\partial{m_x}}} (\frac{\cancel{\partial{m_x}}}{\partial{y}})$
$=2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\partial{y}}$
式子(3)中 $\frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{z}})^2]$
$=2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\partial{m_x}} (\frac{\partial{m_{x}}}{\partial{z}})$
$=2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\cancel{\partial{m_x}}} (\frac{\cancel{\partial{m_x}}}{\partial{z}})$
$=2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\partial{z}}$
将式子(3)的结果带回式子(2)得到:$\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$
$=A \frac{\partial{}}{\partial{m_x}} [(\frac{\partial{m_{x}}}{\partial{x}})^2 + (\frac{\partial{m_{x}}}{\partial{y}})^2+ (\frac{\partial{m_{x}}}{\partial{z}})^2]$
$=A[2\frac{\partial{m_{x}}}{\partial{x}} \frac{\partial{}}{\partial{x}} + 2\frac{\partial{m_{x}}}{\partial{y}} \frac{\partial{}}{\partial{y}} + 2\frac{\partial{m_{x}}}{\partial{z}} \frac{\partial{}}{\partial{z}}]$
$=2A \nabla{} \cdot \nabla{m_x}$
$=2A \nabla^2{m_x}$
同理,式子(1)的第二项:$\frac{\partial{}}{\partial{m_y}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$
$=A \frac{\partial{}}{\partial{m_y}} [(\frac{\partial{m_{y}}}{\partial{x}})^2 + (\frac{\partial{m_{y}}}{\partial{y}})^2+ (\frac{\partial{m_{y}}}{\partial{z}})^2]$
$=2A \nabla^2{m_y}$
同理,式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])$
$=A \frac{\partial{}}{\partial{m_z}} [(\frac{\partial{m_{z}}}{\partial{x}})^2 + (\frac{\partial{m_{z}}}{\partial{y}})^2+ (\frac{\partial{m_{z}}}{\partial{z}})^2]$
$=2A \nabla^2{m_z}$
将以上三项带回式子(1)合并得到交换能的有效场:$\overrightarrow{H_{ex}}$
$=\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{x} + \frac{\partial{}}{\partial{m_y}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{y} + \frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_z})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{z}]$
$=\frac{2A}{{-u_{0}}{M_s}} ( \nabla^2{m_x}\hat{x} + \nabla^2{m_y}\hat{y} + \nabla^2{m_z}\hat{z})$
$=\frac{2A}{{-u_{0}}{M_s}} \nabla^2{\vec{m}}$
# 三、界面DMI能的有效场
已知界面DMI能的能量密度公式:
$$E^{inter}_{DMI}=D(\vec{m} \cdot \nabla{m_z} - m_z \nabla \cdot \vec{m})
=D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}})$$
其中 $D$ 是界面DMI强度,单位 $J/m^2$。那么可以得到界面DMI能的有效场: $\overrightarrow{H^{inter}_{DMI}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E^{inter}_{DMI}}}{\delta{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E^{inter}_{DMI}}}{\partial{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E^{inter}_{DMI}}}{\partial{m_x}}\hat{x} + \frac{\partial{E^{inter}_{DMI}}}{\partial{m_y}}\hat{y} + \frac{\partial{E^{inter}_{DMI}}}{\partial{m_z}}\hat{z})$
$=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{}}{\partial{m_x}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))\hat{x} + \frac{\partial{}}{\partial{m_y}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))\hat{y} + \frac{\partial{}}{\partial{m_z}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))\hat{z})$ ***********************************************(式子 1)
其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))$
$=D[\frac{\partial{}}{\partial{m_x}}(m_x \frac{\partial{m_z}}{\partial{x}} )
-\frac{\partial{}}{\partial{m_x}}(m_z \frac{\partial{m_x}}{\partial{x}})
+\frac{\partial{}}{\partial{m_x}}(m_y \frac{\partial{m_z}}{\partial{y}})
-\frac{\partial{}}{\partial{m_x}}(m_z \frac{\partial{m_y}}{\partial{y}})$
$=D[\frac{\partial{m_z}}{\partial{x}}
-m_z \frac{\partial{}}{\partial{x}}
+0
-0]$
$=D[\frac{\partial{m_z}}{\partial{x}}
-m_z \frac{\partial{}}{\partial{x}}]$
其中式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))$
$=D[\frac{\partial{}}{\partial{m_y}}(m_x \frac{\partial{m_z}}{\partial{x}} )
-\frac{\partial{}}{\partial{m_y}}(m_z \frac{\partial{m_x}}{\partial{x}})
+\frac{\partial{}}{\partial{m_y}}(m_y \frac{\partial{m_z}}{\partial{y}})
-\frac{\partial{}}{\partial{m_y}}(m_z \frac{\partial{m_y}}{\partial{y}})$
$=D[0 - 0 +
\frac{\partial{m_z}}{\partial{y}}
-m_z \frac{\partial{}}{\partial{y}}]$
$=D[\frac{\partial{m_z}}{\partial{y}}
-m_z \frac{\partial{}}{\partial{y}}]$
其中式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}}))$
$=D[\frac{\partial{}}{\partial{m_z}}(m_x \frac{\partial{m_z}}{\partial{x}} )
-\frac{\partial{}}{\partial{m_z}}(m_z \frac{\partial{m_x}}{\partial{x}})
+\frac{\partial{}}{\partial{m_z}}(m_y \frac{\partial{m_z}}{\partial{y}})
-\frac{\partial{}}{\partial{m_z}}(m_z \frac{\partial{m_y}}{\partial{y}})$
$=D[m_x\frac{\partial{}}{\partial{x}}
-\frac{\partial{m_x}}{\partial{x}}
+m_y\frac{\partial{}}{\partial{y}}
-\frac{\partial{m_y}}{\partial{y}}]$
将以上三项带回式子(1)合并得到界面DMI能的有效场: $\overrightarrow{H^{inter}_{DMI}}$
$=\frac{1}{{-u_{0}}{M_s}}
[D[\frac{\partial{m_z}}{\partial{x}}
-m_z \frac{\partial{}}{\partial{x}}]\hat{x}
+D[\frac{\partial{m_z}}{\partial{y}}
-m_z \frac{\partial{}}{\partial{y}}]\hat{y}
+D[m_x\frac{\partial{}}{\partial{x}}
-\frac{\partial{m_x}}{\partial{x}}
+m_y\frac{\partial{}}{\partial{y}}
-\frac{\partial{m_y}}{\partial{y}}]\hat{z}]$
$=\frac{D}{{-u_{0}}{M_s}}
[(\frac{\partial{m_z}}{\partial{x}}\hat{x}
-m_z \frac{\partial{\hat{x}}}{\partial{x}})
+(\frac{\partial{m_z}}{\partial{y}}\hat{y}
-m_z \frac{\partial{\hat{y}}}{\partial{y}})
+(m_x\frac{\partial{\hat{z}}}{\partial{x}}
-\frac{\partial{m_x}}{\partial{x}}\hat{z}
+m_y\frac{\partial{\hat{z}}}{\partial{y}}
-\frac{\partial{m_y}}{\partial{y}}\hat{z})]$
$=\frac{D}{{-u_{0}}{M_s}}
[(\frac{\partial{m_z}}{\partial{x}}\hat{x}
-m_z \cdot 0)
+(\frac{\partial{m_z}}{\partial{y}}\hat{y}
-m_z \cdot 0)
+(m_x \cdot 0
-\frac{\partial{m_x}}{\partial{x}}\hat{z}
+m_y \cdot 0
-\frac{\partial{m_y}}{\partial{y}}\hat{z})]$ ********************************($\hat{x},\hat{y},\hat{z}$ 都是(方向)常矢量,它们的偏导数为0)
$=\frac{D}{{-u_{0}}{M_s}}
(\frac{\partial{m_z}}{\partial{x}}\hat{x}
+\frac{\partial{m_z}}{\partial{y}}\hat{y}
-\frac{\partial{m_x}}{\partial{x}}\hat{z}
-\frac{\partial{m_y}}{\partial{y}}\hat{z})$
$=\frac{D}{{u_{0}}{M_s}}[(\nabla \cdot \vec{m})\hat{z} - \nabla{m_z}]$
# 四、体DMI能的有效场
已知体DMI能的能量密度公式:
$$
E^{bulk}_{DMI}=D[\vec{m} \cdot (\nabla \times \vec{m})]
$$
首先展开 $\vec{m}$ 的旋度 $\nabla \times \vec{m}$
$=\begin{vmatrix}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial{}}{\partial{x}} & \frac{\partial{}}{\partial{y}} & \frac{\partial{}}{\partial{z}} \\
m_x & m_y & m_z
\end{vmatrix}$
$=(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}, \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}, \frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})$
带回原式得到:
$$
E^{bulk}_{DMI}=D[\vec{m} \cdot (\nabla \times \vec{m})]
=D[(m_x,m_y,m_z) \cdot
(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}, \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}, \frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]
$$
$$
=D[m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})
+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})
+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]
$$
其中 $D$ 是体DMI强度,单位 $J/m^2$(注意:==**体DMI和界面DMI单位相同**==)。那么可以得到体DMI能的有效场: $\overrightarrow{H^{bulk}_{DMI}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E^{bulk}_{DMI}}}{\delta{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E^{bulk}_{DMI}}}{\partial{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E^{bulk}_{DMI}}}{\partial{m_x}}\hat{x} + \frac{\partial{E^{bulk}_{DMI}}}{\partial{m_y}}\hat{y} + \frac{\partial{E^{bulk}_{DMI}}}{\partial{m_z}}\hat{z})$
$=\frac{1}{{-u_{0}}{M_s}}\Bigg(
\frac{\partial{}}{\partial{m_x}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]\hat{x}
+\frac{\partial{}}{\partial{m_y}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]\hat{y}
+\frac{\partial{}}{\partial{m_z}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]\hat{z}\Bigg)$ ***********************************************(式子 1)
其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]$
$=D[(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{}}{\partial{z}} - 0) +m_z(0- \frac{\partial{}}{\partial{y}})]$
$=D(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}+m_y\frac{\partial{}}{\partial{z}} - m_z \frac{\partial{}}{\partial{y}})$
其中式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]$
$=D[m_x (0 - \frac{\partial{}}{\partial{z}})+(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}) +m_z(\frac{\partial{}}{\partial{x}}-0)]$
$=D(-m_x \frac{\partial{}}{\partial{z}} + \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}} + m_z \frac{\partial{}}{\partial{x}})$
其中式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}[D(m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})+m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})+m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})]$
$=D[m_x(\frac{\partial{}}{\partial{y}} - 0)+m_y(0 - \frac{\partial{}}{\partial{x}}) +(\frac{\partial{m_y}}{\partial{x}}- \frac{\partial{m_x}}{\partial{y}})]$
$=D(m_x\frac{\partial{}}{\partial{y}} - m_y\frac{\partial{}}{\partial{x}}+\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})$
将以上三项带回式子(1)合并得到体DMI能的有效场: $\overrightarrow{H^{bulk}_{DMI}}$
$=\frac{1}{{-u_{0}}{M_s}}\Bigg(
D(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}+m_y\frac{\partial{}}{\partial{z}} - m_z \frac{\partial{}}{\partial{y}})\hat{x}
+D(-m_x \frac{\partial{}}{\partial{z}} + \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}} + m_z \frac{\partial{}}{\partial{x}})\hat{y}
+D(m_x\frac{\partial{}}{\partial{y}} - m_y\frac{\partial{}}{\partial{x}}+\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})\hat{z}\Bigg)$
$=\frac{D}{{-u_{0}}{M_s}}\Bigg(
(\frac{\partial{m_z}}{\partial{y}}\hat{x} - \frac{\partial{m_y}}{\partial{z}}\hat{x}+m_y\frac{\partial{\hat{x}}}{\partial{z}} - m_z \frac{\partial{\hat{x}}}{\partial{y}})
+(-m_x \frac{\partial{\hat{y}}}{\partial{z}} + \frac{\partial{m_x}}{\partial{z}}\hat{y} - \frac{\partial{m_z}}{\partial{x}}\hat{y} + m_z \frac{\partial{\hat{y}}}{\partial{x}})
+(m_x\frac{\partial{\hat{z}}}{\partial{y}} - m_y\frac{\partial{\hat{z}}}{\partial{x}}+\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}}\hat{z})\Bigg)$ ********************************($\hat{x},\hat{y},\hat{z}$ 都是(方向)常矢量,它们的偏导数为0)
$=\frac{D}{{-u_{0}}{M_s}}\Bigg(
(\frac{\partial{m_z}}{\partial{y}}\hat{x} - \frac{\partial{m_y}}{\partial{z}}\hat{x}+ 0 - 0)
+(- 0+ \frac{\partial{m_x}}{\partial{z}}\hat{y} - \frac{\partial{m_z}}{\partial{x}}\hat{y} + 0)
+(0 - 0+\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}}\hat{z})\Bigg)$
$=\frac{D}{{-u_{0}}{M_s}}[
(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})\hat{x}
+(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})\hat{y}
+(\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}})\hat{z}]$
$=\frac{D}{{-u_{0}}{M_s}}(\nabla \times \vec{m})$
# 五、磁晶单轴各向异性能的有效场
已知磁晶单轴各向异性能的能量密度公式:
$$
E_{uniaxial}=-K_u (\vec{m} \cdot \vec{u})^2 或 E_{uniaxial}=-K_1 (\vec{m} \cdot \vec{u})^2 -K_2 (\vec{m} \cdot \vec{u})^2 (高阶形式)
$$
其中 $\vec{u}$ 是磁晶易轴方向(单位矢量), $K_u$ 是磁晶单轴各向异性常数,单位 $J/m^3$。那么可以得到磁晶单轴各向异性能的有效场: $\overrightarrow{H_{uniaxial}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{uniaxial}}}{\delta{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{uniaxial}}}{\partial{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{uniaxial}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{uniaxial}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{uniaxial}}}{\partial{m_z}}\hat{z})$
此处和推导塞曼能的有效场的步骤相同,将 $(\vec{m} \cdot \vec{u})$ 展开为 $m_x u_x+m_y u_y+m_z u_z$ 方便我们求导,带回上式:
$=\frac{1}{{-u_{0}}{M_s}}\Bigg(\frac{\partial{}}{\partial{m_x}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{x}
+\frac{\partial{}}{\partial{m_y}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{y}
+\frac{\partial{}}{\partial{m_z}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{z}\Bigg)$ ***********************************************(式子 1)
其中式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]$
$=-2K_u[(m_x u_x+m_y u_y+m_z u_z)][u_x + 0 + 0]$
$=-2K_u(\vec{m} \cdot \vec{u}) u_x$
其中式子(1)的第二项: $\frac{\partial{}}{\partial{m_y}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]$
$=-2K_u[(m_x u_x+m_y u_y+m_z u_z)][0 + u_y + 0]$
$=-2K_u(\vec{m} \cdot \vec{u}) u_y$
其中式子(1)的第三项: $\frac{\partial{}}{\partial{m_z}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]$
$=-2K_u[(m_x u_x+m_y u_y+m_z u_z)][0 + 0 + u_z]$
$=-2K_u(\vec{m} \cdot \vec{u}) u_z$
将以上三项带回式子(1)合并得到磁晶单轴各向异性能的有效场: $\overrightarrow{H_{uniaxial}}$
$=\frac{1}{{-u_{0}}{M_s}}\Bigg(-2K_u(\vec{m} \cdot \vec{u}) u_x \hat{x}
-2K_u(\vec{m} \cdot \vec{u}) u_y \hat{y}
-2K_u(\vec{m} \cdot \vec{u}) u_y \hat{z}\Bigg)$
$=\frac{-2K_u}{{-u_{0}}{M_s}}(\vec{m} \cdot \vec{u}) (u_x \hat{x}
+u_y \hat{y}
-u_y \hat{z})$
$=\frac{2K_u}{{u_{0}}{M_s}}(\vec{m} \cdot \vec{u}) \vec{u}$
# 六、磁晶立方各向异性能的有效场
已知磁晶立方各向异性能的能量密度公式:
$$
E_{cubic}=-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]
$$
其中 $\vec{u_1},\vec{u_2},\vec{u_3}$ 是磁晶易轴方向(单位矢量),而且 $\vec{u_3}$ 是通过 $\vec{u_1},\vec{u_2}$ 的叉乘确定的:$\vec{u_3} = \vec{u_1} \times \vec{u_2}$ 。$K_c$ 是磁晶立方各向异性常数,单位 $J/m^3$。那么可以得到磁晶立方各向异性能的有效场: $\overrightarrow{H_{cubic}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{cubic}}}{\delta{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{cubic}}}{\partial{\overrightarrow{m}}}$
$=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{cubic}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{cubic}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{cubic}}}{\partial{m_z}}\hat{z})$
$=\frac{1}{{-u_{0}}{M_s}}\Bigg( \frac{\partial{}}{\partial{m_x}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{x}$
$+\frac{\partial{}}{\partial{m_y}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{y}$
$+\frac{\partial{}}{\partial{m_z}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{z}\Bigg)$
$=\frac{1}{{-u_{0}}{M_s}}\Bigg( \frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2
+[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2
+[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{x}$
$+\frac{\partial{}}{\partial{m_y}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2
+[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2
+[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{y}$
$+\frac{\partial{}}{\partial{m_z}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2
+[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2
+[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{z}\Bigg)$ ***********************************************(式子 1)
此处和推导磁晶单轴各向异性能的有效场的步骤相同,将 $(\vec{m} \cdot \vec{u_{n}})$ 展开为 $m_x u_{nx}+m_y u_{ny}+m_z u_{nz}$ 方便我们求导,带回上式,计算式子(1)的第一项: $\frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2
+[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2
+[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]$
$=-K_c\frac{\partial{}}{\partial{m_x}}\Bigg([(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})]^2$
$+[(m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) (m_x u_{3x}+m_y u_{3y}+m_z u_{3z})]^2$
$+[(m_x u_{3x}+m_y u_{3y}+m_z u_{3z}) (m_x u_{1x}+m_y u_{1y}+m_z u_{1z})]^2\Bigg)$ ***********************************************(式子 2)
对于式子(2)的第一项,可以利用复合函数的求导法则($(uv)^{\prime}=u^{\prime}v + uv^{\prime}$)来简化计算,于是:
$\frac{\partial{}}{\partial{m_x}}[(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})]^2]$
$=2[(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})]
\Bigg( (u_{1x}+0+0) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})
+(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (u_{2x}+0 +0)$
$=2[(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})]
\Bigg( u_{1x} (m_x u_{2x}+m_y u_{2y}+m_z u_{2z})
+(m_x u_{1x}+m_y u_{1y}+m_z u_{1z}) u_{2x}\Bigg)$
$=2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1x}
+(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2x}]$
同理,可以根据结果的规律写出式子(2)的第二项:
$\frac{\partial{}}{\partial{m_x}}[[(m_x u_{2x}+m_y u_{2y}+m_z u_{2z}) (m_x u_{3x}+m_y u_{3y}+m_z u_{3z})]^2]$
$=2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x}
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}]$
同理,可以根据结果的规律写出式子(2)的第三项:
$\frac{\partial{}}{\partial{m_x}}[[(m_x u_{3x}+m_y u_{3y}+m_z u_{3z}) (m_x u_{1x}+m_y u_{1y}+m_z u_{1z})]^2]$
$=2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x}
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}]$
将以上三项带回式子(2)合并得到式子(2)的结果,即式子(1)的第一项:
$\frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2
+[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2
+[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{x}$
$=-K_c \Bigg($
$2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1x}
+(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2x}]+$
$2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2x}
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3x}]+$
$2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3x}
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1x}]$
$\Bigg)\hat{x}$
同理,可以根据第一项结果的规律写出式子(1)的第二项:
$\frac{\partial{}}{\partial{m_y}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2
+[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2
+[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{y}$
$=-K_c \Bigg($
$2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1y}
+(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2y}]+$
$2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2y}
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3y}]+$
$2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3y}
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1y}]$
$\Bigg)\hat{y}$
同理,可以根据第一项结果的规律写出式子(1)的第三项:
$\frac{\partial{}}{\partial{m_z}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2
+[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2
+[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{z}$
$=-K_c \Bigg($
$2[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 u_{1z}
+(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) u_{2z}]+$
$2[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 u_{2z}
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) u_{3z}]+$
$2[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 u_{3z}
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) u_{1z}]$
$\Bigg)\hat{z}$
将以上三项带回式子(1)合并得到磁晶立方各向异性能的有效场: $\overrightarrow{H_{cubic}}$:
$=\frac{-2K_c}{{-u_{0}}{M_s}}\Bigg(
(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z})
+(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z})$
$+(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2(u_{2x}\hat{x} + u_{2y}\hat{y} + u_{2z}\hat{z})
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z})$
$+(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2(u_{3x}\hat{x} + u_{3y}\hat{y} + u_{3z}\hat{z})
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})(u_{1x}\hat{x} + u_{1y}\hat{y} + u_{1z}\hat{z})\Bigg)$
$=\frac{2K_c}{{u_{0}}{M_s}}\Bigg( (\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})^2 \vec{u_1}
+(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2}) \vec{u_2}$
$+(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})^2 \vec{u_2}
+(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3}) \vec{u_3}$
$+(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})^2 \vec{u_2}
+(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1}) \vec{u_1}\Bigg)$
$=\frac{2K_c}{{u_{0}}{M_s}}\Bigg(
(\vec{m} \cdot \vec{u_1})[(\vec{m} \cdot \vec{u_2})^2 + (\vec{m} \cdot \vec{u_3})^2] \vec{u_1}$
$+(\vec{m} \cdot \vec{u_2})[(\vec{m} \cdot \vec{u_3})^2 + (\vec{m} \cdot \vec{u_1})^2] \vec{u_2}$
$+(\vec{m} \cdot \vec{u_3})[(\vec{m} \cdot \vec{u_1})^2 + (\vec{m} \cdot \vec{u_2})^2] \vec{u_3}
\Bigg)$
# 总结
<font color=#999AAA >
本文总结了微磁学中通过几个基本的能量密度公式推导出其有效场,内容核心就是求偏导,各种各样的偏导。至于微磁学中的其它公式推导,暂时还没学到皮毛,只有等以后再说了。