- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- Python数据可视化 Pyecharts 制作 Scatter3D 3D散点图
Mr数据杨
Python数据可视化数据可视化python数据分析echarts
三维散点图是展示具有三个维度数据的有效工具,通过对数据点在三维空间中的分布进行可视化,可以直观地观察数据间的关系与趋势。借助pyecharts库的Scatter3D类,用户能够快速生成3D散点图,并自定义图表的各项参数,使图表更加符合展示需求。结合强大的视觉映射和交互功能,三维散点图不仅提升了数据分析的精度,还增强了用户与数据之间的互动性。文章目录Scatter3D:3D散点图Demo总结Scat
- 大型项目,选择conda还是Poetry要点分析
Hello kele
condaPythonPoetryAI编程人工智能
在大型项目中选择conda还是Poetry,取决于项目的具体需求,以下从多个维度进行分析,助你判断哪个更合适:包管理方面支持的包类型conda:作为跨语言的包管理系统,不仅能管理Python包,还能处理其他语言(如C、C++、R等)的包和依赖。对于大型项目,尤其是涉及多语言协同开发的项目,比如数据科学项目中可能会用到Python进行数据分析,同时依赖底层用C语言编写的高性能计算库,conda可以很
- 用python制作简单的小游戏,用python设计一个小游戏
w12130826
pygamepython开发语言人工智能
本篇文章给大家谈谈python编写小游戏详细教程,以及用python制作简单的小游戏,希望对各位有所帮助,不要忘了收藏本站喔。Python为什么能这么火热?Python相对于其他语言来说比较简单,即使是零基础的普通人也能很快的掌握,在其他方面比如,处于灰色界的爬虫,要VIP的视频,小说,歌,没有爬虫解决不了的;数据挖掘及分析,淘宝就是例子,想开个淘宝店,需要获取相关商品信息,这时数据分析就能解决等
- TikTok矩阵系统介绍
m0_74891046
矩阵
在TikTok的多账号管理中,矩阵系统是一种高效的管理方式,能够帮助运营者合理分配资源、优化内容策略,提高整体账号的协同效应。矩阵系统主要涉及多个账号的内容规划、互动管理、数据分析等方面,适用于个人创作者、团队以及机构化运营。1.TikTok矩阵系统的核心概念矩阵系统指的是通过系统化的方式运营多个TikTok账号,使其在内容、用户互动和数据分析等方面形成协同效应。与单账号运营相比,矩阵系统具备更高
- python和java的优缺点-java有哪些python没有的优点?
weixin_37988176
Java和Python都是目前最火的后台语言。Java的使用时间更久,更成熟,Python语言更年轻,更便捷。两者各有各的优势:Python的优势:1.学起来简单,开发效率高,同样的功能用Java开发可能需要写200条代码,但是用Python只需要30~50条;2.在大数据挖掘方面有突出优势,是大数据分析首选的编程语言,Python可以让开发人员轻松表达概念,程序员维护和更新代码库更容易;3.Py
- r语言手动算两个C指数p值,如何用R语言进行Pvalue显著性标记?
蒲牢森
r语言手动算两个C指数p值
作者:一只想飞的喵审稿:童蒙编辑:angelica箱线图是统计学中较常见的图形之一。这篇文章将讲述如何简单比较两组或多组的平均值,且添加显著性标记。通常情况根据显著性p值的数值大小,分为四类:(1)0.01≤p<0.05,*(2)0.001≤p<0.01,**(3)0.0001≤p<0.001,***(4)p<0.0001,****接下来会讲述三种添加显著性标记的方法。方法1-手动添加1:创建数据
- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- Python连接SQL SEVER数据库全流程
web13508588635
数据库pythonsql
背景介绍在数据分析领域,经常需要从数据库中获取数据进行分析和处理。而SQLServer是一种常用的关系型数据库管理系统,因此学习如何使用Python连接SQLServer数据库并获取数据是非常有用的。以下是Python使用pymssql连接SQLServer数据库的全流程:安装pymssql库本地账号设置脚本连接数据导入函数实现一、安装pymssqlpymssql是Python连接SQLServe
- Python:分享一个Python爬虫入门实例(有源码,学习使用)
衍生星球
python爬虫学习pyecharts
一、爬虫基础知识Python爬虫是一种使用Python编程语言实现的自动化获取网页数据的技术。它广泛应用于数据采集、数据分析、网络监测等领域。以下是对Python爬虫的详细介绍:架构和组成:下载器:负责根据指定的URL下载网页内容,常用的库有Requests和urllib。解析器:用于解析下载的网页内容,提取所需的数据。BeautifulSoup和lxml是常用的解析库。存储器:将提取的数据存储到
- 机器学习平台系列(一) - 初探 Jupyter Notebook 认证机制
窝窝和牛牛
机器学习平台PythonJupyterNotebookJupyterHub安全多租户
最近准备调研下JupyterNotebook的单用户安全机制(认证)以及如何实现多租户,以便集成到公司的云平台,进而作为基于大数据平台的机器学习平台的一部分。1.问题分析数据分析以及算法团队的同学使用JupyterNotebook进行数据分析和建模等工作,其工作流程如下所示:业务部门以组为单位申请一台物理服务器搭建Python环境,启动JupyterNotebook,每个同学创建自己的工程,进行代
- python pandas 加速循环_Pandas DataFrame遍历加速/性能优化
weixin_39653622
pythonpandas加速循环
如果您使用Python和Pandas进行数据分析,即使对于小型DataFame,使用标准Python循环也是很费时间的,而对于大型DataFrame则需要花费特别长的时间。有什么方法可以优化呢?西面来看看不同遍历方法的性能标准循环DataFrame(数据帧)是具有行和列的Pandas对象(objects)。如果使用循环,则将遍历整个对象。Python无法利用任何内置函数,而且速度非常慢。在我们的示
- 遍历Pandas DataFrame数据的行:方法与实践
Midsummer-逐梦
#pandaspandaspython
遍历PandasDataFrame数据的行:方法与实践在数据分析和处理过程中,我们经常需要遍历PandasDataFrame中的每一行数据。Pandas提供了多种方法来满足这一需求。本文将介绍几种常见的遍历DataFrame行的方法,并讨论它们的使用场景和注意事项。一、引言Pandas是一个强大的Python数据分析库,它提供了快速、灵活、直观的数据结构,用于处理结构化数据。DataFrame是P
- python中遍历dataframe
hzp666
pythonpandaspythondataframedf
在数据分析的过程中,往往需要用到DataFrame的类型,因为这个类型就像EXCEL表格一样,便于我们个中连接、计算、统计等操作。在数据分析的过程中,避免不了的要对数据进行遍历,那么,DataFrame如何遍历呢?之前,小白每次使用时都是Google或百度,想想,还是总结一下~小白经常用到的有三种方式,如下:首先,先读入一个DataFrameimportpandasaspd#读入数据df=pd.r
- 如何建立需求变更的规范化流程
需求管理
在项目开发过程中,需求变更是不可避免的现象,流程透明、沟通机制、风险控制成为建立规范化流程的三大关键。流程透明确保变更原因、内容、审批和反馈都能被全员了解和跟踪,从而降低因信息不对称产生的误解和风险;同时,合理的沟通机制和严格的风险控制是保障变更顺利实施的重要环节,其中风险控制通过细致的数据分析和及时预警发挥了决定性作用。一、需求变更的重要性与背景需求变更是软件开发与项目管理中常见的问题。随着技术
- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 数据分析学习目录
且行且安~
数据分析进阶之路#数据分析目录数据分析
在未来5个月里,将会陪伴大家一起来学习关于数据分析的相关内容,包括从数据思维,数据工具(Excel,Mysql,Hive,Python),数据方法论,数据展示(Tableau,BI),数据挖掘、数据实战项目一整套的内容,同步会将可能用到的以及有用的知识点整理出来。内容会慢慢更新。如下为数据分析的整个目录一、数据分析思维与方法论1.1、从0-1搭建指标体系、用户标签体系1.1.1、指标体系搭建-专项
- 美业行业的数据困境:如何用管理中心8破解员工数据分析难题?
S18151700486
数据分析大数据数据挖掘经验分享笔记
在美业行业,门店的运营效率直接关系到企业的生存与发展。然而,许多美业门店在管理过程中面临一个共同的痛点:难以有效分析员工数据。无论是员工的业绩表现、客户反馈,还是工作习惯,这些数据往往分散在各个系统中,缺乏统一的整合与分析工具。这不仅导致管理效率低下,还使得门店难以制定科学的运营策略。美业行业的痛点:员工数据分析为何如此困难?数据分散,难以整合美业门店的员工数据通常分散在多个系统中,例如预约系统、
- SQL学习的一些网站
小白考数工
数据库
以下是一些适合进行SQL实际案例练习的优质网站推荐,涵盖从基础语法练习到复杂业务场景的题目类型,供你参考:---###**一、综合刷题与业务场景类**1.**牛客网**-**特点**:国内最大的SQL题库之一,题目数量超过500道,包含《SQL必知必会》配套题单、数据分析面试真题(如短视频、用户增长等真实业务场景)。-**优势**:免费使用,支持在线调试和题解讨论,界面简洁直观,适合备战面试或提升
- 智能云图库项目实战(4)---空间模块
rain雨雨编程
项目实战权限管理锁机制事务云图库Spring
♂️个人主页:@rain雨雨编程微信公众号:rain雨雨编程✍作者简介:持续分享机器学习,爬虫,数据分析希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录本节重点一、需求分析二、方案设计空间的必要性空间库表设计1.空间表2、图片表公共图库和空间的关系三、后端开发空间管理1、数据模型2、基础服务开发3、接口开发用户创建私有空间1、创建空间流程2、创建空间服务扩展知
- 数据分析新时代:AI驱动的高效开发与智能决策
inscode_017
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE数据分析新时代:AI驱动的高效开发与智能决策在当今数字化转型的大潮中,数据分析已经成为企业决策、产品优化和市场洞察的核心驱动力。随着数据量的爆炸式增长,传统的数据分析工具已经难以满足快速变化的需求。为了应对这一挑战,新一代智能化工具应运而生,其中最具代表性的当属AI驱动的开发环境。本文将探讨如何利用这种智能化工具提升数据分
- Python在机器学习与数据分析领域的深度应用:从基础到实战
CodeJourney.
python算法
在当今数字化时代,数据如同宝贵的矿产资源,蕴含着无尽的价值等待挖掘。Python作为一门强大而灵活的编程语言,凭借其丰富的库和工具,在机器学习和数据分析领域扮演着举足轻重的角色。它不仅为数据科学家和开发者提供了高效处理和分析数据的手段,还助力构建各种智能模型,实现精准预测和决策支持。本文将深入探讨Python在机器学习和数据分析领域的应用,涵盖机器学习基础概念、Pandas库的使用技巧、数据分析实
- 【玩转正则表达式】将正则表达式中的分组(group)与替换进行结合使用
ThisIsClark
玩转正则表达式正则表达式mysql数据库
在文本处理和数据分析领域,正则表达式(RegularExpressions,简称regex)是一种功能强大的工具。它不仅能够帮助我们匹配和搜索字符串中的特定模式,还能通过分组(Grouping)和替换(Substitution)功能实现更复杂的文本处理任务。本文将详细介绍正则表达式中的分组机制,并探讨其如何与替换功能结合使用,以实现高效的文本处理。一、正则表达式中的分组正则表达式中的分组是一个极为
- Python神器 Jupyter Notebook
懒大王爱吃狼
pythonpython开发语言Python基础python学习服务器
JupyterNotebook是Python领域中备受推崇的一款神器,以下是对其的详细介绍:一、概述JupyterNotebook是一款开放源代码的Web应用程序,它允许用户创建和共享包含实时代码、方程式、可视化和叙述文本的文档。它适用于数据分析、可视化、机器学习等多种场景,尤其在数据科学领域中广受欢迎。二、安装与配置JupyterNotebook可以通过多种方式进行安装,其中最常见的是通过安装A
- 132java ssm springboot基于大数据的吉林省农村产权交易数据分析可视化平台系统(源码+文档+运行视频+讲解视频)
QQ2279239102
springboot大数据数据分析开发语言mavenvue.js
文章目录系列文章目录目的前言一、详细视频演示二、项目部分实现截图三、技术栈后端框架springboot前端框架vue持久层框架MyBaitsPlus系统测试四、代码参考源码获取目的摘要:本文介绍了基于JavaSSM和SpringBoot开发的吉林省农村产权交易数据分析可视化平台系统,为农村产权交易市场提供决策支持。系统前端利用HTML、CSS和JavaScript构建直观的可视化界面,后端运用Ja
- python常见面试题 基础篇 (一)
航叔啦
Python基础篇1:为什么学习Python家里有在这个IT圈子里面,也想让我接触这个圈子,然后给我建议学的Python,然后自己通过百度和向有学过Python的同学了解了Python,Python这门语言,入门比较简单,它简单易学,生态圈比较强大,涉及的地方比较多,特别是在人工智能,和数据分析这方面。在未来我觉得是往自动化,人工智能这方面发展的,所以学习了Python2:通过什么途径学习Pyth
- python数据分析pandas库安装与使用
范哥来了
python数据分析pandas
好的,我来为你介绍如何在Python环境中安装并使用scipy和pandas这两个库。这两个库都是进行数据分析时非常有用的工具。安装首先,你需要确保你的Python环境已经配置好了pip(Python的包管理器)。如果还没有安装pip,请先安装它。对于大多数现代Python安装来说,pip是默认包含的。1.安装scipy打开命令提示符或终端,运行以下命令来安装scipy:pipinstallsci
- 思考–如何学习陌生的知识
后知后觉的先行者
思考学习
思考–如何学习陌生的知识面对新知识的学习,可以遵循以下系统化的方法,既提高效率又减少迷茫感:一、明确学习目标:打破“学什么都要学全”的误区核心原则二八定律:80%的实用场景只需掌握20%的核心知识。场景驱动:明确“学这个知识要解决什么问题?”(例如:学Python是为了数据分析还是自动化办公?)。快速定位重点通过行业标杆案例、岗位JD或技术文档,提取高频关键词(如“神经网络”之于AI、“API调用
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 【数据分析之道-NumPy(二)】多种方式创建数组_创建一个3行4列的二维数组(1)
2401_84159839
程序员数据分析numpy数据挖掘
专栏导读✍作者简介:i阿极,CSDNPython领域新星创作者,专注于分享python领域知识。✍本文录入于《数据分析之道》,本专栏针对大学生、初级数据分析工程师精心打造,对python基础知识点逐一击破,不断学习,提升自我。✍订阅后,可以阅读《数据分析之道》中全部文章内容,包含python基础语法、数据结构和文件操作,科学计算,实现文件内容操作,实现数据可视化等等。✍还可以订阅进阶篇《数据分析之
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,