爱因斯坦场方程之Schwarzschild真空解

Schwarzschild真空解

  • 李导数和Killing矢量场
    • 推拉映射
    • 李导数
    • Killing矢量场
  • 静态球对称时空
    • Schwarzschild真空解

李导数和Killing矢量场

推拉映射

ϕ \phi ϕ是流形间的光滑映射,其拉回映射 ϕ ∗ \phi^* ϕ定义为
( ϕ ∗ f ) ∣ p = f ∣ ϕ ( p ) (\phi^*f)|_p = f|_{\phi(p)} (ϕf)p=fϕ(p)
其推前映射 ϕ ∗ \phi_* ϕ定义为
( ϕ ∗ v ) ∣ ϕ ( p ) ( f ) = v ∣ p ( ϕ ∗ f ) (\phi_*v)|_{\phi(p)}(f) = v|_p(\phi^*f) (ϕv)ϕ(p)(f)=vp(ϕf)
拉回映射的定义可以推广到 ( 0 , l ) (0, l) (0,l)型张量场,只需定义
( ϕ ∗ T ) a 1 ⋯ a l ∣ p ( v 1 ) a 1 ⋯ ( v l ) a l = T a 1 ⋯ a l ∣ ϕ ( p ) ( ϕ ∗ v 1 ) a 1 ⋯ ( ϕ ∗ v l ) a l (\phi^*T)_{a_1\cdots a_l}|_p(v_1)^{a_1}\cdots(v_l)^{a_l} = T_{a_1\cdots a_l}|_{\phi(p)}(\phi_*v_1)^{a_1}\cdots(\phi_*v_l)^{a_l} (ϕT)a1alp(v1)a1(vl)al=Ta1alϕ(p)(ϕv1)a1(ϕvl)al
类似地,推前映射的推广为
( ϕ ∗ T ) a 1 ⋯ a k ∣ ϕ ( p ) ( ω 1 ) a 1 ⋯ ( ω k ) a k = T a 1 ⋯ a k ∣ p ( ϕ ∗ ω 1 ) a 1 ⋯ ( ϕ ∗ ω k ) a k (\phi_*T)^{a_1\cdots a_k}|_{\phi(p)}(\omega^1)_{a_1}\cdots(\omega^k)_{a_k} = T^{a_1\cdots a_k}|_p(\phi^*\omega^1)_{a_1}\cdots(\phi^*\omega^k)_{a_k} (ϕT)a1akϕ(p)(ω1)a1(ωk)ak=Ta1akp(ϕω1)a1(ϕωk)ak
进一步的推广给出
( ϕ ∗ T ) a 1 ⋯ a k b 1 ⋯ b l ∣ ϕ ( p ) ( ω 1 ) a 1 ⋯ ( ω k ) a k ( v 1 ) b 1 ⋯ ( v l ) b l = T a 1 ⋯ a k b 1 ⋯ b l ∣ p ( ϕ ∗ ω 1 ) a 1 ⋯ ( ϕ ∗ ω k ) a k ( ϕ ∗ − 1 v ) b 1 ⋯ ( ϕ ∗ − 1 v ) b l (\phi_*T)^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_{\phi(p)}(\omega^1)_{a_1}\cdots(\omega^k)_{a_k}(v_1)^{b_1}\cdots(v_l)^{b_l} = T^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_p(\phi^*\omega^1)_{a_1}\cdots(\phi^*\omega^k)_{a_k}(\phi_*^{-1}v)^{b_1}\cdots(\phi_*^{-1}v)^{b_l} (ϕT)a1akb1blϕ(p)(ω1)a1(ωk)ak(v1)b1(vl)bl=Ta1akb1blp(ϕω1)a1(ϕωk)ak(ϕ1v)b1(ϕ1v)bl

( ϕ ∗ T ) a 1 ⋯ a k b 1 ⋯ b l ∣ p ( ω 1 ) a 1 ⋯ ( ω k ) a k ( v 1 ) b 1 ⋯ ( v l ) b l = T a 1 ⋯ a k b 1 ⋯ b l ∣ ϕ ( p ) ( ϕ − 1 ∗ ω 1 ) a 1 ⋯ ( ϕ − 1 ∗ ω k ) a k ( ϕ ∗ v ) b 1 ⋯ ( ϕ ∗ v ) b l (\phi^*T)^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_p(\omega^1)_{a_1}\cdots(\omega^k)_{a_k}(v_1)^{b_1}\cdots(v_l)^{b_l} = T^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_{\phi(p)}(\phi^{-1*}\omega^1)_{a_1}\cdots(\phi^{-1*}\omega^k)_{a_k}(\phi_*v)^{b_1}\cdots(\phi_*v)^{b_l} (ϕT)a1akb1blp(ω1)a1(ωk)ak(v1)b1(vl)bl=Ta1akb1blϕ(p)(ϕ1ω1)a1(ϕ1ωk)ak(ϕv)b1(ϕv)bl

李导数

我们知道光滑矢量场对应单参微分同胚群,也就是说我们考虑该矢量场的积分曲线,然后定义 ϕ t ( p ) \phi_t(p) ϕt(p)为位于过 p p p点的积分曲线上,与 p p p点的参数值差 t t t的点。对于映射 ϕ t \phi_t ϕt,我们可以考虑其拉回 ϕ t ∗ \phi^*_t ϕt,李导数在此基础上定义为
L v T a 1 ⋯ a k b 1 ⋯ b l = lim ⁡ t → 0 1 t ( ϕ t ∗ T a 1 ⋯ a k b 1 ⋯ b l − T a 1 ⋯ a k b 1 ⋯ b l ) \mathscr L_vT^{a_1\cdots a_k}{}_{b_1\cdots b_l} = \lim_{t\to 0}\frac{1}{t}(\phi^*_tT^{a_1\cdots a_k}{}_{b_1\cdots b_l} - T^{a_1\cdots a_k}{}_{b_1\cdots b_l}) LvTa1akb1bl=t0limt1(ϕtTa1akb1blTa1akb1bl)

以积分曲线为 x 1 x^1 x1坐标线的坐标系叫做矢量场的适配坐标系。可以证明,李导数就是对适配坐标系的 x 1 x^1 x1坐标的导数。由此又可以证明 [ v , u ] μ = ( d x μ ) a ( v b ∂ b u a − u b ∂ b v a ) = v b ∂ b u μ = v ( u μ ) = ∂ u μ ∂ x 1 = ( L v u ) μ [v, u]^\mu = (dx^\mu)_a(v^b\partial_bu^a - u^b\partial_bv^a) = v^b\partial_bu^\mu = v(u^\mu) = \frac{\partial u^\mu}{\partial x^1} = (\mathscr L_vu)^\mu [v,u]μ=(dxμ)a(vbbuaubbva)=vbbuμ=v(uμ)=x1uμ=(Lvu)μ. 类似地可以证明
L v T a 1 ⋯ a k b 1 ⋯ b l = v c ∇ c T a 1 ⋯ a k b 1 ⋯ b l − ∑ i = 1 k T a 1 ⋯ a k b 1 ⋯ b l ∇ c v a i + ∑ j = 1 l T a 1 ⋯ a k b 1 ⋯ b l ∇ b j v c \mathscr L_vT^{a_1\cdots a_k}{}_{b_1\cdots b_l} = v^c\nabla_cT^{a_1\cdots a_k}{}_{b_1\cdots b_l} - \sum_{i = 1}^kT^{a_1\cdots a_k}{}_{b_1\cdots b_l}\nabla_cv^{a_i} + \sum_{j = 1}^lT^{a_1\cdots a_k}{}_{b_1\cdots b_l}\nabla_{b_j}v^c LvTa1akb1bl=vccTa1akb1bli=1kTa1akb1blcvai+j=1lTa1akb1blbjvc

Killing矢量场

( M , g a b ) (M, g_{ab}) (M,gab)上的矢量场 ξ a \xi^a ξa称为Killing矢量场,若它给出的单参微分同胚群是单参等度规群,即 ϕ ∗ g a b = g a b \phi^*g_{ab} = g_{ab} ϕgab=gab. 按李导数的定义,这等价于 L ξ g a b = 0 \mathscr L_\xi g_{ab} = 0 Lξgab=0. 也就是说,如果 ∂ g μ ν ∂ x 1 = 0 \frac{\partial g_{\mu\nu}}{\partial x^1} = 0 x1gμν=0,则 ( ∂ ∂ x 1 ) a (\frac{\partial}{\partial x^1})^a (x1)a就是Killing矢量场。而 0 = L ξ g a b = ξ c ∇ c g a b + g c b ∇ a ξ c + g a c ∇ b ξ c = ∇ a ξ b + ∇ b ξ a 0 = \mathscr L_\xi g_{ab} = \xi^c\nabla_cg_{ab} + g_{cb}\nabla_a\xi^c + g_{ac}\nabla_b\xi^c = \nabla_a\xi_b + \nabla_b\xi_a 0=Lξgab=ξccgab+gcbaξc+gacbξc=aξb+bξa. 这被称为Killing方程
∇ ( a ξ b ) = 0 \nabla_{(a}\xi_{b)} = 0 (aξb)=0

静态球对称时空

称时空 ( M , g a b ) (M, g_{ab}) (M,gab)为稳态的,如果它存在类时的Killing矢量场。根据Killing矢量场的定义,有 ∂ g μ ν ∂ t = ( L ξ g ) μ ν = 0 \frac{\partial g_{\mu\nu}}{\partial t} = (\mathscr L_\xi g)_{\mu\nu} = 0 tgμν=(Lξg)μν=0. 故稳态时空的度规具有时间平移不变性。
( M , g a b ) (M, g_{ab}) (M,gab)中的矢量场 v a v^a va称为超曲面正交的,如果 M M M中每一点都存在与 v a v^a va正交的超曲面。
时空 ( M , g a b ) (M, g_{ab}) (M,gab)称为静态的,如果它存在超曲面正交的类时Killing矢量场。静态度规具有时间反射不变性。
坐标系称为时轴正交的,如果类时坐标基矢与类空坐标基矢正交,此时稳态时空的线元表达式就可以简化为
d s 2 = g 00 ( x 1 , x 2 , x 3 ) d t 2 + g i j ( x 1 , x 2 , x 3 ) d x i d y j ds^2 = g_{00}(x^1, x^2, x^3)dt^2 + g_{ij}(x^1, x^2, x^3)dx^idy^j ds2=g00(x1,x2,x3)dt2+gij(x1,x2,x3)dxidyj
使用雅可比行列式求欧氏空间中的球坐标系中的度规可得
d s 2 = d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d φ 2 ds^2 = dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2 ds2=dr2+r2dθ2+r2sin2θdφ2
度规不含 φ \varphi φ,由此容易看出 ξ 1 a = ( ∂ ∂ φ ) a \xi_1^a = (\frac{\partial}{\partial \varphi})^a ξ1a=(φ)a是Killing矢量场。由于球对称性,不难相信 g 00 , g 11 g_{00}, g_{11} g00,g11也不显含 θ \theta θ φ \varphi φ. 综上就得到静态球对称度规的一般形式
d s 2 = g 00 ( r ) d t 2 + g 11 ( r ) d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d φ 2 ds^2 = g_{00}(r)dt^2 + g_{11}(r)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2 ds2=g00(r)dt2+g11(r)dr2+r2dθ2+r2sin2θdφ2
为方便起见,我们把 g 00 、 g 11 g_{00}、g_{11} g00g11分别记作 − e 2 A ( r ) , e 2 B ( r ) -e^{2A(r)}, e^{2B(r)} e2A(r),e2B(r).

Schwarzschild真空解

下面我们就可以求此度规的曲率。首先上述度规是正交的,但不归一,其归一形式应为
d s 2 = − ( e A d t ) 2 + ( e B d r ) 2 + ( r d θ ) 2 + ( r sin ⁡ θ d φ ) 2 ds^2 = -(e^Adt)^2 + (e^Bdr)^2 + (rd\theta)^2 + (r\sin\theta d\varphi)^2 ds2=(eAdt)2+(eBdr)2+(rdθ)2+(rsinθdφ)2
也就是其正交归一坐标基底为
( e 0 ) a = e − A ( ∂ ∂ t ) a , ( e 1 ) a = e − B ( ∂ ∂ r ) a , ( e 2 ) a = r − 1 ( ∂ ∂ θ ) a , ( e 3 ) a = ( r sin ⁡ θ ) − 1 ( ∂ ∂ φ ) a (e_0)^a = e^{-A}(\frac{\partial}{\partial t})^a, (e_1)^a = e^{-B}(\frac{\partial}{\partial r})^a, (e_2)^a = r^{-1}(\frac{\partial}{\partial \theta})^a, (e_3)^a = (r\sin\theta)^{-1}(\frac{\partial}{\partial \varphi})^a (e0)a=eA(t)a,(e1)a=eB(r)a,(e2)a=r1(θ)a,(e3)a=(rsinθ)1(φ)a
对应的对偶基矢为
( e 0 ) a = e A ( d t ) a , ( e 1 ) a = e B ( d r ) a , ( e 2 ) a = r ( d θ ) a , ( e 3 ) a = r sin ⁡ θ ( d φ ) a (e^0)_a = e^A(dt)_a, (e^1)_a = e^B(dr)_a, (e^2)_a = r(d\theta)_a, (e^3)_a = r\sin\theta(d\varphi)_a (e0)a=eA(dt)a,(e1)a=eB(dr)a,(e2)a=r(dθ)a,(e3)a=rsinθ(dφ)a
现在求上述基矢的外微分,以下略去抽象指标,并根据嘉当第一结构方程就有
d e 0 = e A A ′ d r ∧ d t = A ′ e − B e 1 ∧ e 0 = − e 1 ∧ ω 1 0 − e 2 ∧ ω 2 0 − e 3 ∧ ω 3 0 d e 1 = e B d r ∧ d r = 0 = − e 0 ∧ ω 0 1 − e 2 ∧ ω 2 1 − e 3 ∧ ω 3 1 d e 2 = d r d θ = r − 1 e − B e 1 ∧ e 2 = − e 0 ∧ ω 0 2 − e 1 ∧ ω 1 2 − e 3 ∧ ω 3 2 d e 3 = ( d r sin ⁡ θ + r cos ⁡ θ d θ ) d φ = r − 1 e − B e 1 ∧ e 3 + r − 1 cot ⁡ θ e 2 ∧ e 3 = − e 0 ∧ ω 0 3 − e 1 ∧ ω 1 3 − e 2 ∧ ω 2 3 de_0 = e^AA'dr\wedge dt = A'e^{-B}e^1\wedge e^0 = -e^1\wedge\omega_1{}^0 - e^2\wedge\omega_2{}^0 - e^3\wedge\omega_3{}^0 \\ de_1 = e^Bdr\wedge dr = 0 = -e^0\wedge\omega_0{}^1 - e^2\wedge\omega_2{}^1 - e^3\wedge\omega_3{}^1\\ de_2 = drd\theta = r^{-1}e^{-B}e^1\wedge e^2 = -e^0\wedge\omega_0{}^2 - e^1\wedge\omega_1{}^2 - e^3\wedge\omega_3{}^2 \\ de_3 = (dr\sin\theta + r\cos\theta d\theta)d\varphi = r^{-1}e^{-B}e^1\wedge e^3 + r^{-1}\cot\theta e^2\wedge e^3 = -e^0\wedge\omega_0{}^3 - e^1\wedge\omega_1{}^3 - e^2\wedge\omega_2{}^3 de0=eAAdrdt=AeBe1e0=e1ω10e2ω20e3ω30de1=eBdrdr=0=e0ω01e2ω21e3ω31de2=drdθ=r1eBe1e2=e0ω02e1ω12e3ω32de3=(drsinθ+rcosθdθ)dφ=r1eBe1e3+r1cotθe2e3=e0ω03e1ω13e2ω23
上述方程最简单的非零解为
ω 1 0 = − A ′ e − B e 0 = − A ′ e A − B d t ω 1 2 = − r − 1 e − B e 2 = − e − B d θ ω 1 3 = − r − 1 e − B e 3 = − e − B sin ⁡ θ d φ ω 2 3 = − r − 1 cot ⁡ θ e 3 = − cos ⁡ θ d φ \omega_1{}^0 = -A'e^{-B}e^0 = -A'e^{A - B}dt \\ \omega_1{}^2 = -r^{-1}e^{-B}e^2 = -e^{-B}d\theta \\ \omega_1{}^3 = -r^{-1}e^{-B}e^3 = -e^{-B}\sin\theta d\varphi \\ \omega_2{}^3 = -r^{-1}\cot\theta e^3 = -\cos\theta d\varphi ω10=AeBe0=AeABdtω12=r1eBe2=eBdθω13=r1eBe3=eBsinθdφω23=r1cotθe3=cosθdφ
然后用嘉当第二结构方程求曲率2形式,也即
R 0 1 = d ω 0 1 = [ A ′ ′ e A − B + A ′ ( A ′ − B ′ ) e A − B ] d r ∧ d t = e − 2 B ( A ′ ′ − A ′ B ′ + A ′ 2 ) e 0 ∧ e 1 R 0 2 = ω 0 1 ∧ ω 1 2 = − A ′ e A − 2 B d t ∧ d θ = − r − 1 A ′ e − 2 B e 0 ∧ e 2 R 0 3 = ω 0 1 ∧ ω 1 3 = − A ′ e A − 2 B sin ⁡ θ d t ∧ d φ = − r − 1 A ′ e − 2 B e 0 ∧ e 3 R 1 2 = d ω 1 2 + ω 1 3 ∧ ω 3 2 = B ′ e − B d r ∧ d θ = r − 1 B ′ e − 2 B e 1 ∧ e 2 R 1 3 = d ω 1 3 + ω 1 2 ∧ ω 2 3 = ( B ′ e − B sin ⁡ θ d r − e − B cos ⁡ θ d θ ) ∧ d φ + e − B cos ⁡ θ d θ ∧ d φ = r − 1 B ′ e − 2 B e 1 ∧ e 3 R 2 3 = d ω 2 3 + ω 2 1 ∧ ω 1 3 + ω 2 3 ∧ ω 3 1 = sin ⁡ θ d θ ∧ d φ − e − 2 B sin ⁡ θ d θ ∧ d φ = r − 2 ( 1 − e − 2 B ) e 2 ∧ e 3 R_0{}^1 = d\omega_0{}^1 = [A''e^{A - B} + A'(A' - B')e^{A - B}]dr \wedge dt = e^{-2B}(A'' - A'B' + A'^2)e^0\wedge e^1 \\ R_0{}^2 = \omega_0{}^1 \wedge \omega_1{}^2 = -A'e^{A - 2B}dt \wedge d\theta = -r^{-1}A'e^{-2B}e^0\wedge e^2 \\ R_0{}^3 = \omega_0{}^1 \wedge \omega_1{}^3 = -A'e^{A - 2B}\sin\theta dt \wedge d\varphi = -r^{-1}A'e^{-2B}e^0\wedge e^3 \\ R_1{}^2 = d\omega_1{}^2 + \omega_1{}^3 \wedge \omega_3{}^2 = B'e^{-B}dr\wedge d\theta = r^{-1}B'e^{-2B} e^1 \wedge e^2 \\ R_1{}^3 = d\omega_1{}^3 + \omega_1{}^2 \wedge \omega_2{}^3 = (B'e^{-B}\sin\theta dr - e^{-B}\cos\theta d\theta) \wedge d\varphi + e^{-B}\cos\theta d\theta \wedge d\varphi = r^{-1}B'e^{-2B}e^1 \wedge e^3 \\ R_2{}^3 = d\omega_2{}^3 + \omega_2{}^1 \wedge \omega_1{}^3 + \omega_2{}^3 \wedge \omega_3{}^1 = \sin\theta d\theta \wedge d\varphi - e^{-2B}\sin\theta d\theta \wedge d\varphi = r^{-2}(1 - e^{-2B}) e^2 \wedge e^3 R01=dω01=[A′′eAB+A(AB)eAB]drdt=e2B(A′′AB+A′2)e0e1R02=ω01ω12=AeA2Bdtdθ=r1Ae2Be0e2R03=ω01ω13=AeA2Bsinθdtdφ=r1Ae2Be0e3R12=dω12+ω13ω32=BeBdrdθ=r1Be2Be1e2R13=dω13+ω12ω23=(BeBsinθdreBcosθdθ)dφ+eBcosθdθdφ=r1Be2Be1e3R23=dω23+ω21ω13+ω23ω31=sinθdθdφe2Bsinθdθdφ=r2(1e2B)e2e3
根据曲率形式的定义 R μ ν = 1 2 R ρ σ μ ν e ρ ∧ e σ R_\mu{}^\nu = \frac{1}{2}R_{\rho\sigma\mu}{}^\nu e^\rho \wedge e^\sigma Rμν=21Rρσμνeρeσ,对于 R 0 1 R_0{}^1 R01来说,因为它的形式中仅含 e 0 ∧ e 1 e^0\wedge e^1 e0e1,因此 R 0 1 = 1 2 ( R 010 1 e 0 ∧ e 1 + R 100 1 e 1 ∧ e 0 ) = R 010 1 e 0 ∧ e 1 R_0{}^1 = \frac{1}{2}(R_{010}{}^1e^0 \wedge e^1 + R_{100}{}^1 e^1 \wedge e^0) = R_{010}{}^1e^0 \wedge e^1 R01=21(R0101e0e1+R1001e1e0)=R0101e0e1,所以就有
R 010 1 = e − 2 B ( A ′ ′ − A ′ B ′ + A ′ 2 ) R 020 2 = R 030 3 = − r − 1 A ′ e − 2 B R 121 2 = R 131 3 = r − 1 B ′ e − 2 B R 232 3 = r − 2 ( 1 − e − 2 B ) R_{010}{}^1 = e^{-2B}(A'' - A'B' + A'^2) \\ R_{020}{}^2 = R_{030}{}^3 = -r^{-1}A'e^{-2B} \\ R_{121}{}^2 = R_{131}{}^3 = r^{-1}B'e^{-2B} \\ R_{232}{}^3 = r^{-2}(1 - e^{-2B}) R0101=e2B(A′′AB+A′2)R0202=R0303=r1Ae2BR1212=R1313=r1Be2BR2323=r2(1e2B)

R 00 = R 010 1 + R 020 2 + R 030 3 = e − 2 B ( A ′ ′ − A ′ B ′ + A ′ 2 − 2 r − 1 A ′ ) R 11 = R 101 0 + R 121 2 + R 131 3 = e − 2 B ( A ′ ′ − A ′ B ′ + A ′ 2 + 2 r − 1 B ′ ) R 22 = R 202 0 + R 212 1 + R 232 3 = e − 2 B [ r − 1 ( B ′ − A ′ ) − r − 2 ] + r − 2 R 33 = R 303 0 + R 313 1 + R 323 2 = R 22 R_{00} = R_{010}{}^1 + R_{020}{}^2 + R_{030}{}^3 = e^{-2B}(A'' - A'B' + A'^2 - 2r^{-1}A') \\ R_{11} = R_{101}{}^0 + R_{121}{}^2 + R_{131}{}^3 = e^{-2B}(A'' - A'B' + A'^2 + 2r^{-1}B') \\ R_{22} = R_{202}{}^0 + R_{212}{}^1 + R_{232}{}^3 = e^{-2B}[r^{-1}(B' - A') - r^{-2}] + r^{-2} \\ R_{33} = R_{303}{}^0 + R_{313}{}^1 + R_{323}{}^2 = R_{22} R00=R0101+R0202+R0303=e2B(A′′AB+A′22r1A)R11=R1010+R1212+R1313=e2B(A′′AB+A′2+2r1B)R22=R2020+R2121+R2323=e2B[r1(BA)r2]+r2R33=R3030+R3131+R3232=R22
以上是正交归一基底下的里奇张量的表达式,如果不习惯的话,也可以用张量的变换法则
R μ ν ′ = ∂ x ρ ∂ x μ ∂ x σ ∂ x ν R ρ σ R'_{\mu\nu} = \frac{\partial x^\rho}{\partial x^\mu}\frac{\partial x^\sigma}{\partial x^\nu}R_{\rho\sigma} Rμν=xμxρxνxσRρσ
变换回球坐标系下,其结果就是
R 00 = e 2 ( A − B ) ( A ′ ′ − A ′ B ′ + A ′ 2 − 2 r − 1 A ′ ) R 11 = A ′ ′ − A ′ B ′ + A ′ 2 + 2 r − 1 B ′ R 22 = − e − 2 B [ 1 + r ( A ′ − B ′ ) ] + 1 R 33 = − { e − 2 B [ 1 + r ( A ′ − B ′ ) ] − 1 } sin ⁡ 2 θ R_{00} = e^{2(A - B)}(A'' - A'B' + A'^2 - 2r^{-1}A') \\ R_{11} = A'' - A'B' + A'^2 + 2r^{-1}B' \\ R_{22} = -e^{-2B}[1 + r(A' - B')] + 1 \\ R_{33} = -\{e^{-2B}[1 + r(A' - B')] - 1\}\sin^2\theta R00=e2(AB)(A′′AB+A′22r1A)R11=A′′AB+A′2+2r1BR22=e2B[1+r(AB)]+1R33={e2B[1+r(AB)]1}sin2θ

爱因斯坦场方程为
R a b − 1 2 R g a b = 8 π T a b R_{ab} - \frac{1}{2}Rg_{ab} = 8\pi T_{ab} Rab21Rgab=8πTab
我们令 T a b = 0 T_{ab} = 0 Tab=0以便考虑其在真空下的表达式, R a b − 1 2 R g a b = 0 R_{ab} - \frac{1}{2}Rg_{ab} = 0 Rab21Rgab=0,两边求迹(注意 g a b g a b = δ a a g^{ab}g_{ab} = \delta^a{}_a gabgab=δaa,其迹为 4 4 4)就有 R − 2 R = 0 R - 2R = 0 R2R=0,于是真空爱因斯坦场方程就是
R a b = 0 R_{ab} = 0 Rab=0
再结合前述结果,给出如下方程
A ′ ′ − A ′ B ′ + A ′ 2 − 2 r − 1 A ′ = 0 A ′ ′ − A ′ B ′ + A ′ 2 + 2 r − 1 B ′ = 0 − e − 2 B [ 1 + r ( A ′ − B ′ ) ] + 1 = 0 A'' - A'B' + A'^2 - 2r^{-1}A' = 0 \\ A'' - A'B' + A'^2 + 2r^{-1}B' = 0 \\ -e^{-2B}[1 + r(A' - B')] + 1 = 0 A′′AB+A′22r1A=0A′′AB+A′2+2r1B=0e2B[1+r(AB)]+1=0
由前两个方程可以得到 A ′ = − B ′ A' = -B' A=B,因此 A = − B + α A = -B + \alpha A=B+α. 再代入第三个方程得
1 − 2 r B ′ = e 2 B 1 - 2rB' = e^{2B} 12rB=e2B
这是可分离变量的方程,通过分离变量,得到
2 B ′ 1 − e 2 B = 1 r \frac{2B'}{1 - e^{2B}} = \frac{1}{r} 1e2B2B=r1
x = e 2 B x = e^{2B} x=e2B,则 d x = 2 x d B dx = 2xdB dx=2xdB,两边积分就有
∫ 2 1 − x d B = ∫ 2 1 − x 1 2 x d x = ∫ ( 1 1 − x + 1 x ) d x = ln ⁡ r \int\frac{2}{1 - x}dB = \int\frac{2}{1 - x}\frac{1}{2x}dx = \int(\frac{1}{1 - x} + \frac{1}{x})dx= \ln r 1x2dB=1x22x1dx=(1x1+x1)dx=lnr
于是
− ln ⁡ ( 1 − x ) + ln ⁡ x + ln ⁡ C = ln ⁡ C x 1 − x = ln ⁡ r -\ln(1 - x) + \ln x + \ln C = \ln\frac{Cx}{1 - x}= \ln r ln(1x)+lnx+lnC=ln1xCx=lnr
解得
x = e 2 B = ( 1 + C r ) − 1 x = e^{2B} = (1 + \frac{C}{r})^{-1} x=e2B=(1+rC)1
代回原度规表达式得
d s 2 = − ( 1 + C r ) e 2 α d t 2 + ( 1 + C r ) − 1 d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d φ 2 ds^2 = -(1 + \frac{C}{r})e^{2\alpha}dt^2 + (1 + \frac{C}{r})^{-1}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2 ds2=(1+rC)e2αdt2+(1+rC)1dr2+r2dθ2+r2sin2θdφ2
考虑新坐标 t ^ = e α t \hat t = e^\alpha t t^=eαt,并仍将其记作 t t t,上式就可以简化为
d s 2 = − ( 1 + C r ) d t 2 + ( 1 + C r ) − 1 d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d φ 2 ds^2 = -(1 + \frac{C}{r})dt^2 + (1 + \frac{C}{r})^{-1}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2 ds2=(1+rC)dt2+(1+rC)1dr2+r2dθ2+r2sin2θdφ2
这就是Schwarzschild度规。注意到当 r → ∞ r \to \infty r时,上述度规自然就变成闵可夫斯基度规的球坐标形式,这说明Schwarzschild度规是渐进平直的。

为了得出 C C C的具体表达式,注意到一阶近似下有 ( 1 + C r ) − 1 = ( 1 − C r ) (1 + \frac{C}{r})^{-1} = (1 - \frac{C}{r}) (1+rC)1=(1rC),于是上式就近似为
d s 2 = − d t 2 + d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d φ 2 − C r ( d t 2 + d r 2 ) ds^2 = -dt^2 + dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2 - \frac{C}{r}(dt^2 + dr^2) ds2=dt2+dr2+r2dθ2+r2sin2θdφ2rC(dt2+dr2)
而一阶近似下 g a b = η a b + γ a b g_{ab} = \eta_{ab} + \gamma_{ab} gab=ηab+γab,也就是说 γ 00 = − C r \gamma_{00} = -\frac{C}{r} γ00=rC,根据牛顿极限的结果,就有 ϕ = C 2 r \phi = \frac{C}{2r} ϕ=2rC. 而在牛顿引力论中, ϕ = − M r \phi = -\frac{M}{r} ϕ=rM,于是 C = − 2 M C = -2M C=2M,这样就算是得到了Schwarzschild度规的最终表达式
d s 2 = − ( 1 − 2 M r ) d t 2 + ( 1 − 2 M r ) − 1 d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d φ 2 ds^2 = -(1 - \frac{2M}{r})dt^2 + (1 - \frac{2M}{r})^{-1}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2 ds2=(1r2M)dt2+(1r2M)1dr2+r2dθ2+r2sin2θdφ2
其中 M M M是星体质量。

你可能感兴趣的:(数学,物理,线性代数)