视频运动检测基本思想是进行每一帧对比,检测不同然后得出是否运动,一般分为两种,背景法和差帧法;
背景法是:将一幅图作为背景,让后和每一帧对比;缺点是一开始存入的背景可能随光照变法而造成错误,但是可以用在光照环境稳定的地方,优点是可以检测之前背景没有的景象;
差帧法是:将前一帧和后一帧进行对比;缺点是无法对运动后突然又静止的景象进行识别,优点是光照不影响;
实例背景法:
///运动检测,摄像头检测,背景法
Mat MoveDetectBack(Mat background,Mat frame);//声明运动检测函数
void imgMoveDetectionBack()
{
/*VideoCapture结构体,保存图像信息,open()参数为int index(0为默认摄像头),读入摄像头视频,
open()参数为路径,读入视频文件*/
VideoCapture cap(0); // 打开摄像头0
if (!cap.isOpened()) // 异常处理
{
QMessageBox mesg;
mesg.about(NULL,"提示","摄像头打开失败");
waitKey(1000);
}
Mat frame;//存储帧
Mat background;//存储背景图像
Mat result;//存储结果图像
//先存储背景
bool firstF= cap.read(frame); // 先获取一帧
//异常处理
if (!firstF) { QMessageBox mesg;
mesg.about(NULL,"提示","Cannot read a frame from video stream"); }
else
{background = frame.clone();}//存储背景
//循环检测视频
while (1)
{
bool bSuccess = cap.read(frame); // 读取
if (!bSuccess) //异常处理
{
QMessageBox mesg;
mesg.about(NULL,"提示","Cannot read a frame from video stream");
break;
}
///
if (frame.empty())//对帧进行异常检测
{
cout << "frame is empty!" << endl;
break;
}
//将背景和每一帧做差
result = MoveDetectBack(background, frame);//调用MoveDetect()进行运动物体检测,返回值存入result
imshow("result", result);
//
if (waitKey(30) == 27) //按键退出
{
QMessageBox mesg;
mesg.about(NULL,"信息","退出摄像");
break;
}
}
waitKey(10);
cap.release();
}
//检测函数
Mat MoveDetectBack(Mat background, Mat frame)
{
Mat result = frame.clone();
//1.将background和frame转为灰度图
Mat gray1, gray2;
cvtColor(background, gray1, CV_BGR2GRAY);
cvtColor(frame, gray2, CV_BGR2GRAY);
//2.将background和frame做差
Mat m_different;
absdiff(gray1, gray2, m_different);
imshow("m_different", m_different);
//3.对差值图diff_thresh进行阈值化处理
Mat Dif_Thresh;
threshold(m_different, Dif_Thresh, 50, 255, CV_THRESH_BINARY);
imshow("Dif_Thresh",Dif_Thresh);
//4.腐蚀
Mat kernel_erode = getStructuringElement(MORPH_RECT, Size(3, 3));
Mat kernel_dilate = getStructuringElement(MORPH_RECT, Size(15, 15));
erode(Dif_Thresh, Dif_Thresh, kernel_erode);
imshow("erode", Dif_Thresh);
//5.膨胀
dilate(Dif_Thresh, Dif_Thresh, kernel_dilate);
imshow("dilate", Dif_Thresh);
//6.查找轮廓并绘制轮廓
vector> contours;
findContours(Dif_Thresh, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
drawContours(result, contours, -1, Scalar(0, 0, 255), 2);//在result上绘制轮廓
//7.查找正外接矩形
vector boundRect(contours.size());
for (int i = 0; i < contours.size(); i++)
{
boundRect[i] = boundingRect(contours[i]);
rectangle(result, boundRect[i], Scalar(0, 255, 0), 2);//在result上绘制正外接矩形
}
return result;//返回result
}
效果:
差帧法:
///运动检测3,摄像头检测,差帧法
Mat MoveDetect3(Mat background,Mat frame);//声明运动检测函数
void imgMoveDetection3()
{
/*VideoCapture结构体,保存图像信息,open()参数为int index(0为默认摄像头),读入摄像头视频,
open()参数为路径,读入视频文件*/
VideoCapture cap(0); // 打开摄像头0
if (!cap.isOpened()) // 异常处理
{
QMessageBox mesg;
mesg.about(NULL,"提示","摄像头打开失败");
waitKey(1000);
}
Mat frame;//存储帧
Mat temp;//存储前一帧图像
Mat result;//存储结果图像
while (1)
{
bool bSuccess = cap.read(frame); // 获取一帧
if (!bSuccess) //异常处理
{
QMessageBox mesg;
mesg.about(NULL,"提示","Cannot read a frame from video stream");
break;
}
///
if (frame.empty())//对帧进行异常检测
{
cout << "frame is empty!" << endl;
break;
}
if ( temp.empty())//如果temp为空则为第一帧
{
result = MoveDetect3(frame, frame);//调用MoveDetect()进行运动物体检测,返回值存入result
}
else//若不是第一帧(temp有值了)
{
result = MoveDetect3(temp, frame);//调用MoveDetect()进行运动物体检测,返回值存入result
}
imshow("result", result);
temp = frame.clone();
//
if (waitKey(30) == 27) //按键退出
{
QMessageBox mesg;
mesg.about(NULL,"信息","退出摄像");
break;
}
}
waitKey(10);
cap.release();
}
//检测函数
Mat MoveDetect3(Mat background, Mat frame)
{
Mat result = frame.clone();
//1.将background和frame转为灰度图
Mat gray1, gray2;
cvtColor(background, gray1, CV_BGR2GRAY);
cvtColor(frame, gray2, CV_BGR2GRAY);
//2.将background和frame做差
Mat m_different;
absdiff(gray1, gray2, m_different);
imshow("m_different", m_different);
//3.对差值图diff_thresh进行阈值化处理
Mat Dif_Thresh;
threshold(m_different, Dif_Thresh, 50, 255, CV_THRESH_BINARY);
imshow("Dif_Thresh",Dif_Thresh);
//4.腐蚀
Mat kernel_erode = getStructuringElement(MORPH_RECT, Size(3, 3));
Mat kernel_dilate = getStructuringElement(MORPH_RECT, Size(15, 15));
erode(Dif_Thresh, Dif_Thresh, kernel_erode);
imshow("erode", Dif_Thresh);
//5.膨胀
dilate(Dif_Thresh, Dif_Thresh, kernel_dilate);
imshow("dilate", Dif_Thresh);
//6.查找轮廓并绘制轮廓
vector> contours;
findContours(Dif_Thresh, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
drawContours(result, contours, -1, Scalar(0, 0, 255), 2);//在result上绘制轮廓
//7.查找正外接矩形
vector boundRect(contours.size());
for (int i = 0; i < contours.size(); i++)
{
boundRect[i] = boundingRect(contours[i]);
rectangle(result, boundRect[i], Scalar(0, 255, 0), 2);//在result上绘制正外接矩形
}
return result;//返回result
}
效果: