- 用Tensorflow进行线性回归和逻辑回归(十)
lishaoan77
tensorflow线性回归tensorboard可视化
用TensorBoard可视化线性回归模型TensorBoard是一种可视化工具,用于了解、调试和优化模型训练过程。它使用在执行程序时编写的摘要事件。上面定义的模型使用tf.summary.FileWriter来写日志到日志目录/tmp/lr-train.我们可以用命令调用日志目录的TensorBoard,见Example3-13(TensorBoard已黙认安装与TensorFlow一起).Ex
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- (线性代数最小二乘问题)Normal Equation(正规方程)
音程
数学线性代数机器学习人工智能
NormalEquation(正规方程)是线性代数中的一个重要概念,主要用于解决最小二乘问题(LeastSquaresProblem)。它通过直接求解一个线性方程组,找到线性回归模型的最优参数(如权重或系数)。以下是详细介绍:1.定义与数学表达式给定一个超定方程组(方程数量多于未知数):Ax=bA\mathbf{x}=\mathbf{b}Ax=b其中:A∈Rm×nA\in\mathbb{R}^{m
- 机器学习之常用的回归预测模型
曼城周杰伦
机器学习机器学习回归人工智能算法
本文全面整理了各种回归预测模型,旨在帮助读者更好地学习回归预测模型。转载自:https://mp.weixin.qq.com/s/7m2waIASOEg90NONgRpQFQ一.线性模型线性回归是一种线性模型,通过特征的线性组合来预测连续值标签。线性回归通过拟合系数(可选择是否设置截距)的线性模型,以最小化真实值和预测值之间的残差平方和。scikit-learnlinear_models:http
- 机器学习数据预处理:L2正则化(岭回归)
数字化与智能化
人工智能机器学习机器学习L2正则化岭回归
一、L2正则化介绍L2正则化,也称为岭回归(RidgeRegression),是一种常用的正则化方法。它在线性回归模型中通过在损失函数中添加L2范数的平方来惩罚模型的复杂度,从而防止过拟合。在线性回归中,我们的目标是最小化损失函数,通常以最小化均方误差来衡量。而L2正则化通过在损失函数中添加模型参数的L2范数的平方来进行正则化。L2范数是指模型参数的平方和的开方。正则化惩罚的目标是使模型参数尽量接
- 【人工智能-练习】三个案例搞明白机器学习中的三大任务:分类、回归、聚类
若北辰
人工智能分类回归
文章目录一、分类任务结果代码解释导入必要的库配置字体生成模拟数据集拆分数据集数据标准化逻辑回归分类器预测并计算准确率绘制分类效果定义决策边界绘制函数绘制训练集和测试集的分类效果二、回归结果代码解释1.导入库2.设置Matplotlib的字体3.生成模拟数据集4.将数据集划分为训练集和测试集5.数据标准化6.定义线性回归模型7.预测8.计算均方误差(MSE)9.绘制回归预测效果图训练集上的预测效果测
- 用Tensorflow进行线性回归和逻辑回归(一)
lishaoan77
tensorflowtensorflow线性回归逻辑回归
这一章告诉你如何用TensorFlow构建简单的机器学习系统。第一部分回顾构建机器学习系统的基础特别是讲函数,连续性,可微性。接着我们介绍损失函数,然后讨论机器学习归根于找到复杂的损失函数最小化的点的能力。我们然后讲梯度下降,解释它如何使损失最小。然后简单的讨论自动微分的算法思想。第二节侧重于介绍基于这些数学思想的TensorFlow概念。包括placeholders,scopes,optimiz
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 基于Tensorflow的线性回归
用Tensorflow求逆矩阵用Tensorflow实现矩阵分解用Tensorflow实现线性回归理解线性回归中的损失函数用Tensorflow实现戴明回归(DemingRegression)用Tensorflow实现Lasson回归和岭回归(RidgeRegression)用Tensorflow实现弹性网络回归(ElasticNetRegression)用Tensorflow实现逻辑回归文章目录
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- 最小二乘法
superdont
计算机视觉入门最小二乘法算法机器学习matlab矩阵人工智能计算机视觉
最小二乘法(LeastSquaresMethod)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。具体来说,它可以用于线性回归分析,即找到一条最佳拟合直线(或更一般的曲线或面),使得实际观察数据点到这条直线(或曲线/面)的垂直距离(也就是误差)的平方和达到最小。在数学表示上,如果有一组观测数据集((x_i,y_i)),其中(i=1,2,…,n),最小二乘法旨在找到一个模型(y=
- 最小二乘法算法(个人总结版)
爱吃辣椒的年糕
算法使用深度学习算法人工智能fpga开发信息与通信最小二乘法随笔
最小二乘法(LeastSquaresMethod)是一种通过最小化误差平方和来拟合数据的回归分析方法。它被广泛应用于线性回归、多元回归以及其他数据拟合问题中。以下是详细的教程,涵盖基本概念、数学推导、具体步骤和实现代码。1.最小二乘法基本概念最小二乘法是一种用于数据拟合的统计方法,通过最小化观测数据与模型预测值之间的误差平方和,求解模型参数。2.线性回归的最小二乘法线性回归是最简单的最小二乘法应用
- 线性回归讲解L1和L2正则化
XiaoQiong.Zhang
Datamining人工智能机器学习数据挖掘
假设我们有一个线性回归问题:用房屋的面积(size)和房龄(age)两个特征来预测房价(price)。特征:size(面积,平方米),age(房龄,年)目标:price(价格,万元)1.没有正则化的普通线性回归(最容易过拟合)模型的公式是:预测价格=w1*size+w2*age+b其中w1和w2是我们要学习的权重(也叫系数),b是偏置项(也叫截距)。模型的损失函数通常是最小均方误差:MSE=(1/
- 【python机器学习】——线性回归算法
爱读书的无业游民
【python机器学习】机器学习算法python线性回归
线性回归线性回归基本概念线性回归是一种预测模型,它用于分析两个或多个变量之间的关系。在简单的线性回归中,我们通常有一个目标变量(称为响应变量或因变量)和一个或多个预测变量(称为解释变量或自变量)。目标是找到一条直线(在多元情况下是超平面),使得这条直线尽可能地拟合数据点,即最小化预测值和实际值之间的差异。线性回归的基本原理是通过最小化误差平方和来寻找最佳拟合直线。误差平方和是每个数据点到直线的距离
- 通过 Excel 对数据进行曲线拟合(附示例文件)
纸上笔下
ExCel(表格)excel数据拟合曲线拟合模型公式表格
Excel中曲线拟合的多种方法,包括基础工具(如趋势线)和高级技术(如非线性回归)。此外,还扩展了6种常见数学模型及其应用场景,帮助用户更全面地理解曲线拟合的原理与实践。目录曲线拟合基础Excel内置工具趋势线功能Solver插件6种扩展数学模型曲线拟合的数学分支常见问题与避免方法实操步骤与数据示例曲线拟合基础曲线拟合是通过数学函数描述数据点关系的过程,用于预测趋势或分析模式。其核心目标是最小化残
- 8.25 常见机器学习模型的介绍
云策量化
量化软件量化入门教程量化交易量化炒股QMT量化交易入门教程程序化交易PTradedeepseek
8.25常见机器学习模型的介绍Hey,量化投资的小伙伴们!今天我们要聊的是机器学习模型,这些模型就像是我们量化投资工具箱里的瑞士军刀,多功能且强大。准备好了吗?让我们一起探索这些模型的奥秘!1.线性回归(LinearRegression)首先,让我们从最简单的模型开始——线性回归。想象一下,你有一个数据集,里面包含了房子的大小和价格。线性回归模型就像是一个魔法师,它能够找到一条直线,这条直线能够最
- SAS实验04 ——回归分析
jingmingx1
SAS操作分享sas数据分析
实验04回归分析一、实验目的通过实验进行对回归分析的学习,并有效掌握回归分析数据样本的解读和整理并从SAS输出结果中得到相关结论二、实验内容①我近些日子复习英语单词的个数和每天的单词学习时间之间的关系做一元线性回归分析②我近些日子每日学习单词时间与复习/学习单词两个变量之间的关系做二元线性回归分析③对四种不同化学物质对水泥放热的影响做逐步回归④在光电比色计上测定每升溶液中叶绿素的毫克数(x,mg/
- AI 模型分类全解:特性与选择指南
无声旅者
人工智能AIAI大模型
人工智能(AI)技术正以前所未有的速度改变着我们的生活和工作方式。AI模型作为实现人工智能的核心组件,种类繁多,功能各异。从简单的线性回归模型到复杂的深度学习网络,从文本生成到图像识别,AI模型的应用场景广泛且多样。本文将详细介绍AI模型的分类、特性以及如何根据具体需求选择合适的模型,帮助你在AI的海洋中找到最适合的那艘船。一、AI模型的分类(一)按学习方式分类监督学习(SupervisedLea
- 吴恩达机器学习入门笔记(Week 1)
冒冒喵
吴恩达机器学习入门机器学习笔记人工智能
吴恩达机器学习Week1学习资源及工具机器学习分类专业术语(Terminology)线性回归模型(Linearregression)代价函数(costfunction)学习资源及工具1、课程资源:B站大学2、相关工具:Jupter&Github3、书籍资源:神经网络与深度学习(MichaelNielsen)、机器学习(周志华)、统计学习方法(李航)…机器学习分类1、监督学习(supervisedl
- Python实现逻辑回归模型:处理分类问题的经典方案
在机器学习领域,逻辑回归(LogisticRegression)虽名为“回归”,实则是解决分类问题的经典算法。它以简洁的数学原理、高效的计算性能和良好的可解释性,广泛应用于信用风险评估、疾病诊断预测、用户行为分析等场景。本文将深入解析逻辑回归的核心原理,并通过Python代码完整实现从数据准备、模型构建到评估的全流程。一、逻辑回归模型原理概述逻辑回归基于线性回归模型,通过引入逻辑函数(Logist
- 神经网络 隐藏层
MYH516
神经网络人工智能深度学习
神经网络中隐藏层的数量是一个超参数,其选择取决于任务复杂度、数据规模和计算资源。以下是常见的架构类型及其适用场景:1.单层隐藏层(浅神经网络)结构:输入层→1个隐藏层→输出层特点:仅需调整隐藏层神经元数量。可近似任意连续函数(根据通用近似定理)。计算成本低,训练速度快。适用场景:简单任务(如线性回归、小规模分类)。数据量有限或特征维度低。示例代码(使用PyTorch):python运行import
- 空气质量预测 | Python实现基于线性回归、Lasso回归、岭回归、决策树回归的空气质量预测模型
天天酷科研
空气质量预测(AQP)回归python线性回归
文章目录效果一览文章概述源码设计参考资料效果一览文章概述政府机构使用空气质量指数(AQI)向公众传达当前空气污染程度或预测空气污染程度。随着AQI的上升,公共卫生风险也会增加。不同国家有自己的空气质量指数,对应不同国家的空气质量标准。对于空气质量预测,我们将使用4种算法:1.线性回归2.Lasso回归3.岭回归4.决策树回归通过使用上述算法,我们将通过提供训练数据来训练我们的模型,一旦模型被训练,
- 机器学习算法种类繁多以下是主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议
zhxup606
数据结构与算法.netcore
机器学习算法种类繁多,根据任务类型主要分为监督学习、无监督学习、半监督学习和强化学习四大类。以下是对主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议。一、机器学习算法分类及详细描述1.监督学习(SupervisedLearning)监督学习使用带标签的数据(输入和输出已知)进行训练,目标是学习输入到输出的映射函数。1.1线性回归(LinearRegression)描
- (三)动手学线性神经网络:从数学原理到代码实现
只有左边一个小酒窝
动手学深度学习神经网络人工智能深度学习
1线性回归线性回归是一种基本的预测模型,用于根据输入特征预测连续的输出值。它是机器学习和深度学习中最简单的模型之一,但却是理解更复杂模型的基础。1.1线性回归的基本元素概念理解:线性回归假设输入特征和输出之间存在线性关系。具体来说,假设有一个输入特征向量xxx和一个目标值yyy,线性回归模型的目标是找到一个线性函数f(x)f(x)f(x),使得f(x)f(x)f(x)尽可能接近yyy。线性回归模型
- 斯坦福CS229机器学习笔记-Lecture2-线性回归+梯度下降+正规方程组
Teeyohuang
机器学习CS229-吴恩达机器学习笔记CS229吴恩达机器学习
声明:此系列博文根据斯坦福CS229课程,吴恩达主讲所写,为本人自学笔记,写成博客分享出来博文中部分图片和公式都来源于CS229官方notes。CS229的视频和讲义均为互联网公开资源Lecture2这一节主要讲的是三个部分的内容:·LinearRegression(线性回归)·GradientDescent(梯度下降)·NormalEquations(正规方程组)1、线性回归首先给了一个例子,如
- 2篇7章6节:弹性网(Elastic Net)回归的原理和应用场景,并用R进行代码演示
R科学与人工智能
用R探索医药数据科学回归r语言数据挖掘Lasso回归人工智能变量选择机器学习
在统计建模和机器学习中,回归分析是一项基础而重要的技术。我们经常使用线性回归模型来探索变量之间的关系、预测未知数据。然而,传统线性回归在处理多重共线性(也称为变量高度相关)或高维数据时,往往会遇到严重的性能问题,比如模型过拟合、解释力下降等。为了解决这些问题,学者们提出了多种“正则化”(regularization)方法,其中最知名的有两种:Lasso回归和岭回归。本文将介绍它们的“融合升级版”—
- 02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
狂小虎
DeepLearning深度学习神经网络逻辑回归
逻辑回归逻辑回归是一种用于解决二分类任务(如预测是否是猫咪等)的统计学习方法。尽管名称中包含“回归”,但其本质是通过线性回归的变体输出概率值,并使用Sigmoid函数将线性结果映射到[0,1]区间。以猫咪预测为例假设单个样本/单张图片为(x\mathbf{x}x,y\mathbf{y}y),特征向量X=x\mathbf{x}x,则y^\hat{y}y^即为X的预测值,y^\hat{y}y^=P(y
- 实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.6 R语言解题
lishaoan77
实验设计与分析思考题回归r语言实验设计与数据分析‘线性回归回归显著性
本文是实验设计与分析(第6版,Montgomery著,傅珏生译)第10章拟合回归模型10.9节思考题10.6R语言解题。主要涉及线性回归、回归的显著性。10-6vialsummary(lm.fit)Call:lm.default(formula=Viscosity~Temperature+Catalyst,data=visc)Residuals:123456-24.98724.30711.820-
- 实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题
lishaoan77
实验设计与分析思考题回归r语言实验设计与数据分析线性回归回归显著性残差分析
本文是实验设计与分析(第6版,Montgomery著,傅珏生译)第10章拟合回归模型10.9节思考题10.12R语言解题。主要涉及线性回归、回归的显著性、残差分析。10-12vialsummary(lm.fit)Call:lm.default(formula=Viscosity~(Temperature)^2+(Catalyst)^2,data=visc)Residuals:Min1QMedian
- 打卡第二十天
Shining_Jiang
机器学习人工智能
方差筛选方差筛选是一种基于特征方差的特征选择方法。通过计算每个特征的方差,剔除方差较小的特征,因为这些特征对模型的贡献较小。皮尔逊相关系数筛选皮尔逊相关系数用于衡量特征与目标变量之间的线性相关性。通过计算每个特征与目标变量的相关系数,选择相关性较高的特征。Lasso筛选Lasso回归是一种带有L1正则化的线性回归方法,能够通过正则化系数将某些特征的权重压缩为零,从而实现特征选择。树模型重要性树模型
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?