pytorch-Field 源码:text/torchtext/data/field.py
【转】如何利用torchtext读取json文件并生成batch 作者:Geek Fly --> 这篇文章挺好的
# coding: utf8
from collections import Counter, OrderedDict
from itertools import chain
import six
import torch
from tqdm import tqdm
from .dataset import Dataset
from .pipeline import Pipeline
from .utils import get_tokenizer, dtype_to_attr, is_tokenizer_serializable
from ..vocab import Vocab, SubwordVocab
class RawField(object):
""" Defines a general datatype.
Every dataset consists of one or more types of data. For instance, a text
classification dataset contains sentences and their classes, while a
machine translation dataset contains paired examples of text in two
languages. Each of these types of data is represented by a RawField object.
A RawField object does not assume any property of the data type and
it holds parameters relating to how a datatype should be processed.
Attributes:
preprocessing: The Pipeline that will be applied to examples
using this field before creating an example.
Default: None.
postprocessing: A Pipeline that will be applied to a list of examples
using this field before assigning to a batch.
Function signature: (batch(list)) -> object
Default: None.
is_target: Whether this field is a target variable.
Affects iteration over batches. Default: False
"""
def __init__(self, preprocessing=None, postprocessing=None, is_target=False):
self.preprocessing = preprocessing
self.postprocessing = postprocessing
self.is_target = is_target
def preprocess(self, x):
""" Preprocess an example if the `preprocessing` Pipeline is provided. """
if self.preprocessing is not None:
return self.preprocessing(x)
else:
return x
def process(self, batch, *args, **kwargs):
""" Process a list of examples to create a batch.
Postprocess the batch with user-provided Pipeline.
Args:
batch (list(object)): A list of object from a batch of examples.
Returns:
object: Processed object given the input and custom
postprocessing Pipeline.
"""
if self.postprocessing is not None:
batch = self.postprocessing(batch)
return batch
class Field(RawField):
"""Defines a datatype together with instructions for converting to Tensor.
Field class models common text processing datatypes that can be represented
by tensors. It holds a Vocab object that defines the set of possible values
for elements of the field and their corresponding numerical representations.
The Field object also holds other parameters relating to how a datatype
should be numericalized, such as a tokenization method and the kind of
Tensor that should be produced.
If a Field is shared between two columns in a dataset (e.g., question and
answer in a QA dataset), then they will have a shared vocabulary.
Attributes:
sequential: Whether the datatype represents sequential data. If False,
no tokenization is applied. Default: True.
use_vocab: Whether to use a Vocab object. If False, the data in this
field should already be numerical. Default: True.
init_token: A token that will be prepended to every example using this
field, or None for no initial token. Default: None.
eos_token: A token that will be appended to every example using this
field, or None for no end-of-sentence token. Default: None.
fix_length: A fixed length that all examples using this field will be
padded to, or None for flexible sequence lengths. Default: None.
dtype: The torch.dtype class that represents a batch of examples
of this kind of data. Default: torch.long.
preprocessing: The Pipeline that will be applied to examples
using this field after tokenizing but before numericalizing. Many
Datasets replace this attribute with a custom preprocessor.
Default: None.
postprocessing: A Pipeline that will be applied to examples using
this field after numericalizing but before the numbers are turned
into a Tensor. The pipeline function takes the batch as a list, and
the field's Vocab.
Default: None.
lower: Whether to lowercase the text in this field. Default: False.
tokenize: The function used to tokenize strings using this field into
sequential examples. If "spacy", the SpaCy tokenizer is
used. If a non-serializable function is passed as an argument,
the field will not be able to be serialized. Default: string.split.
tokenizer_language: The language of the tokenizer to be constructed.
Various languages currently supported only in SpaCy.
include_lengths: Whether to return a tuple of a padded minibatch and
a list containing the lengths of each examples, or just a padded
minibatch. Default: False.
batch_first: Whether to produce tensors with the batch dimension first.
Default: False.
pad_token: The string token used as padding. Default: "".
unk_token: The string token used to represent OOV words. Default: "".
pad_first: Do the padding of the sequence at the beginning. Default: False.
truncate_first: Do the truncating of the sequence at the beginning. Default: False
stop_words: Tokens to discard during the preprocessing step. Default: None
is_target: Whether this field is a target variable.
Affects iteration over batches. Default: False
"""
vocab_cls = Vocab
# Dictionary mapping PyTorch tensor dtypes to the appropriate Python
# numeric type.
dtypes = {
torch.float32: float,
torch.float: float,
torch.float64: float,
torch.double: float,
torch.float16: float,
torch.half: float,
torch.uint8: int,
torch.int8: int,
torch.int16: int,
torch.short: int,
torch.int32: int,
torch.int: int,
torch.int64: int,
torch.long: int,
}
ignore = ['dtype', 'tokenize']
def __init__(self, sequential=True, use_vocab=True, init_token=None,
eos_token=None, fix_length=None, dtype=torch.long,
preprocessing=None, postprocessing=None, lower=False,
tokenize=None, tokenizer_language='en', include_lengths=False,
batch_first=False, pad_token="", unk_token="",
pad_first=False, truncate_first=False, stop_words=None,
is_target=False):
self.sequential = sequential
self.use_vocab = use_vocab
self.init_token = init_token
self.eos_token = eos_token
self.unk_token = unk_token
self.fix_length = fix_length
self.dtype = dtype
self.preprocessing = preprocessing
self.postprocessing = postprocessing
self.lower = lower
# store params to construct tokenizer for serialization
# in case the tokenizer isn't picklable (e.g. spacy)
self.tokenizer_args = (tokenize, tokenizer_language)
self.tokenize = get_tokenizer(tokenize, tokenizer_language)
self.include_lengths = include_lengths
self.batch_first = batch_first
self.pad_token = pad_token if self.sequential else None
self.pad_first = pad_first
self.truncate_first = truncate_first
try:
self.stop_words = set(stop_words) if stop_words is not None else None
except TypeError:
raise ValueError("Stop words must be convertible to a set")
self.is_target = is_target
def __getstate__(self):
str_type = dtype_to_attr(self.dtype)
if is_tokenizer_serializable(*self.tokenizer_args):
tokenize = self.tokenize
else:
# signal to restore in `__setstate__`
tokenize = None
attrs = {k: v for k, v in self.__dict__.items() if k not in self.ignore}
attrs['dtype'] = str_type
attrs['tokenize'] = tokenize
return attrs
def __setstate__(self, state):
state['dtype'] = getattr(torch, state['dtype'])
if not state['tokenize']:
state['tokenize'] = get_tokenizer(*state['tokenizer_args'])
self.__dict__.update(state)
def __hash__(self):
# we don't expect this to be called often
return 42
def __eq__(self, other):
if not isinstance(other, RawField):
return False
return self.__dict__ == other.__dict__
def preprocess(self, x):
"""Load a single example using this field, tokenizing if necessary.
If the input is a Python 2 `str`, it will be converted to Unicode
first. If `sequential=True`, it will be tokenized. Then the input
will be optionally lowercased and passed to the user-provided
`preprocessing` Pipeline."""
if (six.PY2 and isinstance(x, six.string_types)
and not isinstance(x, six.text_type)):
x = Pipeline(lambda s: six.text_type(s, encoding='utf-8'))(x)
if self.sequential and isinstance(x, six.text_type):
x = self.tokenize(x.rstrip('\n'))
if self.lower:
x = Pipeline(six.text_type.lower)(x)
if self.sequential and self.use_vocab and self.stop_words is not None:
x = [w for w in x if w not in self.stop_words]
if self.preprocessing is not None:
return self.preprocessing(x)
else:
return x
def process(self, batch, device=None):
""" Process a list of examples to create a torch.Tensor.
Pad, numericalize, and postprocess a batch and create a tensor.
Args:
batch (list(object)): A list of object from a batch of examples.
Returns:
torch.autograd.Variable: Processed object given the input
and custom postprocessing Pipeline.
"""
padded = self.pad(batch)
tensor = self.numericalize(padded, device=device)
return tensor
def pad(self, minibatch):
"""Pad a batch of examples using this field.
Pads to self.fix_length if provided, otherwise pads to the length of
the longest example in the batch. Prepends self.init_token and appends
self.eos_token if those attributes are not None. Returns a tuple of the
padded list and a list containing lengths of each example if
`self.include_lengths` is `True` and `self.sequential` is `True`, else just
returns the padded list. If `self.sequential` is `False`, no padding is applied.
"""
minibatch = list(minibatch)
if not self.sequential:
return minibatch
if self.fix_length is None:
max_len = max(len(x) for x in minibatch)
else:
max_len = self.fix_length + (
self.init_token, self.eos_token).count(None) - 2
padded, lengths = [], []
for x in minibatch:
if self.pad_first:
padded.append(
[self.pad_token] * max(0, max_len - len(x))
+ ([] if self.init_token is None else [self.init_token])
+ list(x[-max_len:] if self.truncate_first else x[:max_len])
+ ([] if self.eos_token is None else [self.eos_token]))
else:
padded.append(
([] if self.init_token is None else [self.init_token])
+ list(x[-max_len:] if self.truncate_first else x[:max_len])
+ ([] if self.eos_token is None else [self.eos_token])
+ [self.pad_token] * max(0, max_len - len(x)))
lengths.append(len(padded[-1]) - max(0, max_len - len(x)))
if self.include_lengths:
return (padded, lengths)
return padded
def build_vocab(self, *args, **kwargs):
"""Construct the Vocab object for this field from one or more datasets.
Arguments:
Positional arguments: Dataset objects or other iterable data
sources from which to construct the Vocab object that
represents the set of possible values for this field. If
a Dataset object is provided, all columns corresponding
to this field are used; individual columns can also be
provided directly.
Remaining keyword arguments: Passed to the constructor of Vocab.
"""
counter = Counter()
sources = []
for arg in args:
if isinstance(arg, Dataset):
sources += [getattr(arg, name) for name, field in
arg.fields.items() if field is self]
else:
sources.append(arg)
for data in sources:
for x in data:
if not self.sequential:
x = [x]
try:
counter.update(x)
except TypeError:
counter.update(chain.from_iterable(x))
specials = list(OrderedDict.fromkeys(
tok for tok in [self.unk_token, self.pad_token, self.init_token,
self.eos_token] + kwargs.pop('specials', [])
if tok is not None))
self.vocab = self.vocab_cls(counter, specials=specials, **kwargs)
def numericalize(self, arr, device=None):
"""Turn a batch of examples that use this field into a Variable.
If the field has include_lengths=True, a tensor of lengths will be
included in the return value.
Arguments:
arr (List[List[str]], or tuple of (List[List[str]], List[int])):
List of tokenized and padded examples, or tuple of List of
tokenized and padded examples and List of lengths of each
example if self.include_lengths is True.
device (str or torch.device): A string or instance of `torch.device`
specifying which device the Variables are going to be created on.
If left as default, the tensors will be created on cpu. Default: None.
"""
if self.include_lengths and not isinstance(arr, tuple):
raise ValueError("Field has include_lengths set to True, but "
"input data is not a tuple of "
"(data batch, batch lengths).")
if isinstance(arr, tuple):
arr, lengths = arr
lengths = torch.tensor(lengths, dtype=self.dtype, device=device)
if self.use_vocab:
if self.sequential:
arr = [[self.vocab.stoi[x] for x in ex] for ex in arr]
else:
arr = [self.vocab.stoi[x] for x in arr]
if self.postprocessing is not None:
arr = self.postprocessing(arr, self.vocab)
else:
if self.dtype not in self.dtypes:
raise ValueError(
"Specified Field dtype {} can not be used with "
"use_vocab=False because we do not know how to numericalize it. "
"Please raise an issue at "
"https://github.com/pytorch/text/issues".format(self.dtype))
numericalization_func = self.dtypes[self.dtype]
# It doesn't make sense to explicitly coerce to a numeric type if
# the data is sequential, since it's unclear how to coerce padding tokens
# to a numeric type.
if not self.sequential:
arr = [numericalization_func(x) if isinstance(x, six.string_types)
else x for x in arr]
if self.postprocessing is not None:
arr = self.postprocessing(arr, None)
var = torch.tensor(arr, dtype=self.dtype, device=device)
if self.sequential and not self.batch_first:
var.t_()
if self.sequential:
var = var.contiguous()
if self.include_lengths:
return var, lengths
return var