SVM入门——手写数字识别

SVM介绍

SVM入门——手写数字识别_第1张图片

  • Margin:直观上的宽度(求得最大margin)

  • Hyperplane:超平面

  • Support vectors:支持向量(支持我们找出hyperplane)

SVM是一个constrained optimization problem(约束最优化问题),其中constrain是分指类,optimization是指使得margin最大

机器学习库(Sklearn)

Scikit-learn是用于Python编程语言的免费软件机器学习库。它具有各种分类,回归和聚类算法,包括支持向量机,随机森林,梯度提升,k均值和DBSCAN,旨在与Python数值和科学库NumPy和SciPy进行互操作。

数字识别代码和特征和标签

import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm

numbers = datasets.load_digits()
#numbers are features
print(numbers)
print(len(numbers.data))
#size of data = 1797

print(numbers.target)
# numbers.target cotains all lables([0 1 2 ... 8 9 8])

black_box = svm.SVC(gamma=0.001, C=10000)
#SVC = support vector classifier



X,y = numbers.data[:-888], numbers.target[:-888]
#X represents feature, 1797-888 as train dat, last 888 as test data
#numbers.data[] and numbers.target[] need one to one correspondence

black_box.fit(X,y)
#Feed (X,y) to black_box to train

print(black_box.predict([numbers.data[-145]]))
#predict the last 145 digital

plt.imshow(numbers.images[-145])
plt.show()

识别结果:[4] 和对应的数字图像: 

SVM入门——手写数字识别_第2张图片

调参gmma & C

  • gmma:学习步长(越大越快得到结果,但可能误差大)

  • C

附录:

Code

print(numbers)

Result

{'data': array([[ 0.,  0.,  5., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ..., 10.,  0.,  0.],
       [ 0.,  0.,  0., ..., 16.,  9.,  0.],
       ...,
       [ 0.,  0.,  1., ...,  6.,  0.,  0.],
       [ 0.,  0.,  2., ..., 12.,  0.,  0.],
       [ 0.,  0., 10., ..., 12.,  1.,  0.]]), 'target': array([0, 1, 2, ..., 8, 9, 8]), 'target_names': array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), 'images': array([[[ 0.,  0.,  5., ...,  1.,  0.,  0.],
        [ 0.,  0., 13., ..., 15.,  5.,  0.],
        [ 0.,  3., 15., ..., 11.,  8.,  0.],
        ...,
        [ 0.,  4., 11., ..., 12.,  7.,  0.],
        [ 0.,  2., 14., ..., 12.,  0.,  0.],
        [ 0.,  0.,  6., ...,  0.,  0.,  0.]],

       [[ 0.,  0.,  0., ...,  5.,  0.,  0.],
        [ 0.,  0.,  0., ...,  9.,  0.,  0.],
        [ 0.,  0.,  3., ...,  6.,  0.,  0.],
        ...,
        [ 0.,  0.,  1., ...,  6.,  0.,  0.],
        [ 0.,  0.,  1., ...,  6.,  0.,  0.],
        [ 0.,  0.,  0., ..., 10.,  0.,  0.]],

       [[ 0.,  0.,  0., ..., 12.,  0.,  0.],
        [ 0.,  0.,  3., ..., 14.,  0.,  0.],
        [ 0.,  0.,  8., ..., 16.,  0.,  0.],
        ...,
        [ 0.,  9., 16., ...,  0.,  0.,  0.],
        [ 0.,  3., 13., ..., 11.,  5.,  0.],
        [ 0.,  0.,  0., ..., 16.,  9.,  0.]],

       ...,

       [[ 0.,  0.,  1., ...,  1.,  0.,  0.],
        [ 0.,  0., 13., ...,  2.,  1.,  0.],
        [ 0.,  0., 16., ..., 16.,  5.,  0.],
        ...,
        [ 0.,  0., 16., ..., 15.,  0.,  0.],
        [ 0.,  0., 15., ..., 16.,  0.,  0.],
        [ 0.,  0.,  2., ...,  6.,  0.,  0.]],

       [[ 0.,  0.,  2., ...,  0.,  0.,  0.],
        [ 0.,  0., 14., ..., 15.,  1.,  0.],
        [ 0.,  4., 16., ..., 16.,  7.,  0.],
        ...,
        [ 0.,  0.,  0., ..., 16.,  2.,  0.],
        [ 0.,  0.,  4., ..., 16.,  2.,  0.],
        [ 0.,  0.,  5., ..., 12.,  0.,  0.]],

       [[ 0.,  0., 10., ...,  1.,  0.,  0.],
        [ 0.,  2., 16., ...,  1.,  0.,  0.],
        [ 0.,  0., 15., ..., 15.,  0.,  0.],
        ...,
        [ 0.,  4., 16., ..., 16.,  6.,  0.],
        [ 0.,  8., 16., ..., 16.,  8.,  0.],
        [ 0.,  1.,  8., ..., 12.,  1.,  0.]]]), 'DESCR': ".. _digits_dataset:\n\nOptical recognition of handwritten digits dataset\n--------------------------------------------------\n\n**Data Set Characteristics:**\n\n    :Number of Instances: 5620\n    :Number of Attributes: 64\n    :Attribute Information: 8x8 image of integer pixels in the range 0..16.\n    :Missing Attribute Values: None\n    :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)\n    :Date: July; 1998\n\nThis is a copy of the test set of the UCI ML hand-written digits datasets\nhttps://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits\n\nThe data set contains images of hand-written digits: 10 classes where\neach class refers to a digit.\n\nPreprocessing programs made available by NIST were used to extract\nnormalized bitmaps of handwritten digits from a preprinted form. From a\ntotal of 43 people, 30 contributed to the training set and different 13\nto the test set. 32x32 bitmaps are divided into nonoverlapping blocks of\n4x4 and the number of on pixels are counted in each block. This generates\nan input matrix of 8x8 where each element is an integer in the range\n0..16. This reduces dimensionality and gives invariance to small\ndistortions.\n\nFor info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.\nT. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.\nL. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,\n1994.\n\n.. topic:: References\n\n  - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their\n    Applications to Handwritten Digit Recognition, MSc Thesis, Institute of\n    Graduate Studies in Science and Engineering, Bogazici University.\n  - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.\n  - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.\n    Linear dimensionalityreduction using relevance weighted LDA. School of\n    Electrical and Electronic Engineering Nanyang Technological University.\n    2005.\n  - Claudio Gentile. A New Approximate Maximal Margin Classification\n    Algorithm. NIPS. 2000."}

 

你可能感兴趣的:(python,机器学习,svm,支持向量机,人工智能)