阶段 | 功能 |
---|---|
Map阶段 | 负责将任务分解,即把复杂的任务分解成若干个“简单的任务”来并行处理,但前提是这些任务没有必然的依赖关系,可以单独执行任务。 |
Reduce阶段 | 负责将任务合并,即把Map阶段的结果进行全局汇总。 |
阶段 | 功能 |
---|---|
Map阶段 | 负责将任务分解,即把复杂的任务分解成若干个“简单的任务”来并行处理,但前提是这些任务没有必然的依赖关系,可以单独执行任务。 |
Reduce阶段 | 负责将任务合并,即把Map阶段的结果进行全局汇总。 |
(1)在虚拟机上创建文本文件
(2)上传文件到HDFS指定目录
log4j.rootLogger=INFO, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/wordcount.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
为了更好理解Mapper
类的作用,在map()
函数里暂时不进行每行文本分词处理,直接利用context
输出key
和value
Mapper<泛型参数1, 泛型参数2, 泛型参数3, 泛型参数4>参数说明
序号 | 泛型参数 | 说明 |
---|---|---|
1 | KEYIN | 输入键类型(InputKeyClass) |
2 | VALUEIN | 输入值类型(InputValueClass) |
3 | KEYOUT | 输出键类型(OutputKeyClass) |
4 | VALUEOUT | 输出值类型(OutputValueClass) |
package net.yang.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.net.URI;
public class WordCountDriver {
public static void main(String[] args) throws Exception {
// 创建配置对象
Configuration conf = new Configuration();
// 设置数据节点主机名属性
conf.set("dfs.client.use.datanode.hostname", "true");
// 获取作业实例
Job job = Job.getInstance(conf);
// 设置作业启动类
job.setJarByClass(WordCountDriver.class);
// 设置Mapper类
job.setMapperClass(WordCountMapper.class);
// 设置map任务输出键类型
job.setMapOutputKeyClass(LongWritable.class);
// 设置map任务输出值类型
job.setMapOutputValueClass(Text.class);
// 定义uri字符串
String uri = "hdfs://master:9000";
// 创建输入目录
Path inputPath = new Path(uri + "/wordcount/input");
// 创建输出目录
Path outputPath = new Path(uri + "/wordcount/output");
// 获取文件系统
FileSystem fs = FileSystem.get(new URI(uri), conf);
// 删除输出目录(第二个参数设置是否递归)
fs.delete(outputPath, true);
// 给作业添加输入目录(允许多个)
FileInputFormat.addInputPath(job, inputPath);
// 给作业设置输出目录(只能一个)
FileOutputFormat.setOutputPath(job, outputPath);
// 等待作业完成
job.waitForCompletion(true);
// 输出统计结果
System.out.println("======统计结果======");
FileStatus[] fileStatuses = fs.listStatus(outputPath);
for (int i = 1; i < fileStatuses.length; i++) {
// 输出结果文件路径
System.out.println(fileStatuses[i].getPath());
// 获取文件系统数据字节输入流
FSDataInputStream in = fs.open(fileStatuses[i].getPath());
// 将结果文件显示在控制台
IOUtils.copyBytes(in, System.out, 4096, false);
}
}
}
再运行程序,查看结果
行首数字,表示每行起始位置在整个文件的偏移量(offset)。
第一行:hello hadoop world\n
16个字母,2个空格,1个转义字符,总共19个字符,因此,第二行起始位置在整个文件的偏移量就是19。
第二行:hello hive world\n
14个字母,2个空格,1个转义字符,总共17个字符,因此,第三行起始位置在整个文件的偏移量就是19 + 16 = 36。
第三行:hello hbase world\n
15个字母,2个空格,1个转义字符,总共18个字符,因此,第三行起始位置在整个文件的偏移量就是19 + 16 + 18 = 54。
第四行:hadoop hive hbase\n
15个字母,2个空格,1个转义字符,总共18个字符,因此,第三行起始位置在整个文件的偏移量就是19 + 16 + 18 + 18 = 72。
WordCoutMapper
的输出应该是单词和个数,于是,输出键类型为Text
,输出值类型为IntWritable
。<单词, 1>
的键值对WordCountMapper
的输出键值类型
发生变化,所以必须告诉WordCountDriver
。一个类继承Reducer,变成一个Reducer组件类
Reducer组件会接收Mapper组件的输出结果
第一个泛型对应的是Mapper输出key类型
第二个泛型对应的是Mapper输出value类型
第三个泛型和第四个泛型是Reducer的输出key类型和输出value类型
Reducer组件不能单独存在,但是Mapper组件可以单独存在
当引入Reducer组件后,输出结果文件内容就是Reducer的输出key和输出value
知识点学习
(1)MR框架有两个核心组件,分别是Mapper组件和Reducer组件
(2)写一个类,继承Mapper,则变成了一个Mapper组件类
(3)LongWritable,Text(String),IntWritable,NullWritable都是Hadoop序列化类型
(4)Mapper组件将每行的行首偏移量,作为输入key,通过map()传给程序员
(5)Mapper组件会将每行内容,作为输入value,通过map()传给程序员,重点是获取输入value
(6)Mapper的第一个泛型类型对应的是输入key的类型,第二个泛型类型对应的输入value(在初学阶段,第一个和第二个类型写死)
(7)MR框架所处理的文件必须是在HDFS上的
(8)map()被调用几次,取决于文件的行数
(9)通过context进行结果的输出,以输出key和输出value的形式来输出
(10)输出key是由第三个泛型类型决定,输出value是由第四个泛型类型决定
(11)输出结果文件的数据以及行数取决于context.write
(12)Text=>String: value.toString()
(13)String=>Text: new Text(string var)
(14)LongWritable=>long: key.get()
(15)long=>LongWritable: new LongWritable(long var)
相同key的键值对必须发送同一分区(一个Reduce任务对应一个分区,然后会生成对应的一个结果文件,有多少个Reduce任务,就会有多少个分区,最终就会产生多少个结果文件),否则同一个key最终会出现在不同的结果文件中,那显然不是我们希望看到的结果。
(1)MR默认采用哈希分区HashPartitioner
(2)修改词频统计驱动器类,设置分区数量
hadoop jar
命令来运行(1)利用Maven打包
LifeCycle
下的package
命令package
命令,如果报错,maven插件版本不对pom.xml
文件,添加maven插件,记得要刷新mavenMRWordCount-1.0-SNAPSHOT.jar
(2)将jar包上传到虚拟机
(3)运行jar包,查看结果
hadoop jar MRWordCount-1.0-SNAPSHOT.jar net.yang.mr.WordCountDriver
package net.hw.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.net.URI;
/**
* 功能:新词频统计驱动器类
* 作者:华卫
* 日期:2022年12月14日
*/
public class WordCountDriverNew {
public static void main(String[] args) throws Exception {
// 创建配置对象
Configuration conf = new Configuration();
// 设置数据节点主机名属性
conf.set("dfs.client.use.datanode.hostname", "true");
// 获取作业实例
Job job = Job.getInstance(conf);
// 设置作业启动类
job.setJarByClass(WordCountDriverNew.class);
// 设置Mapper类
job.setMapperClass(WordCountMapper.class);
// 设置map任务输出键类型
job.setMapOutputKeyClass(Text.class);
// 设置map任务输出值类型
job.setMapOutputValueClass(IntWritable.class);
// 设置Reducer类
job.setReducerClass(WordCountReducer.class);
// 设置reduce任务输出键类型
job.setOutputKeyClass(Text.class);
// 设置reduce任务输出值类型
job.setOutputValueClass(IntWritable.class);
// 设置分区数量(reduce任务的数量,结果文件的数量)
job.setNumReduceTasks(3);
// 定义uri字符串
String uri = "hdfs://master:9000";
// 声明输入目录
Path inputPath = null;
// 声明输出目录
Path outputPath = null;
// 判断输入参数个数
if (args.length == 0) {
// 创建输入目录
inputPath = new Path(uri + "/wordcount/input");
// 创建输出目录
outputPath = new Path(uri + "/wordcount/output");
} else if (args.length == 2) {
// 创建输入目录
inputPath = new Path(uri + args[0]);
// 创建输出目录
outputPath = new Path(uri + args[1]);
} else {
// 提示用户参数个数不符合要求
System.out.println("参数个数不符合要求,要么是0个,要么是2个!");
// 结束应用程序
return;
}
// 获取文件系统
FileSystem fs = FileSystem.get(new URI(uri), conf);
// 删除输出目录(第二个参数设置是否递归)
fs.delete(outputPath, true);
// 给作业添加输入目录(允许多个)
FileInputFormat.addInputPath(job, inputPath);
// 给作业设置输出目录(只能一个)
FileOutputFormat.setOutputPath(job, outputPath);
// 等待作业完成
job.waitForCompletion(true);
// 输出统计结果
System.out.println("======统计结果======");
FileStatus[] fileStatuses = fs.listStatus(outputPath);
for (int i = 1; i < fileStatuses.length; i++) {
// 输出结果文件路径
System.out.println(fileStatuses[i].getPath());
// 获取文件系统数据字节输入流
FSDataInputStream in = fs.open(fileStatuses[i].getPath());
// 将结果文件显示在控制台
IOUtils.copyBytes(in, System.out, 4096, false);
}
}
}
hadoop jar MRWordCount-1.0-SNAPSHOT.jar net.yang.mr.WordCountDriverNew
,不指定输入路径和输出路径参数hadoop jar MRWordCount-1.0-SNAPSHOT.jar net.yang.mr.WordCountDriverNew /winter/input /winter/output
,指定输入路径和输出路径参数hadoop jar MRWordCount-1.0-SNAPSHOT.jar net.yang.mr.WordCountDriverNew /winter/input
,指定输入路径参数,不指定输出路径参数net.yang.mr
包里创建WordCount
类package net.hw.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
import java.net.URI;
/**
* 功能:词频统计
* 作者:华卫
* 日期:2022年12月14日
*/
public class WordCount extends Configured implements Tool {
public static class WordCountMapper extends Mapper {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 获取行内容
String line = value.toString();
// 清洗所有英文标点符号(\p——属性[property],P——标点符号[Punctuation])
line = line.replaceAll("[\\pP]", "");
// 按空格拆分得到单词数组
String[] words = line.split(" ");
// 遍历单词数组,生成输出键值对
for (int i = 0; i < words.length; i++) {
context.write(new Text(words[i]), new IntWritable(1));
}
}
}
public static class WordCountReducer extends Reducer {
@Override
protected void reduce(Text key, Iterable values, Context context)
throws IOException, InterruptedException {
// 定义输出键出现次数
int count = 0;
// 历输出值迭代对象,统计其出现次数
for (IntWritable value : values) {
count = count + value.get();
}
// 生成键值对输出
context.write(key, new IntWritable(count));
}
}
@Override
public int run(String[] strings) throws Exception {
// 创建配置对象
Configuration conf = new Configuration();
// 设置数据节点主机名属性
conf.set("dfs.client.use.datanode.hostname", "true");
// 获取作业实例
Job job = Job.getInstance(conf);
// 设置作业启动类
job.setJarByClass(WordCountDriver.class);
// 设置Mapper类
job.setMapperClass(WordCountMapper.class);
// 设置map任务输出键类型
job.setMapOutputKeyClass(Text.class);
// 设置map任务输出值类型
job.setMapOutputValueClass(IntWritable.class);
// 设置Reducer类
job.setReducerClass(WordCountReducer.class);
// 设置reduce任务输出键类型
job.setOutputKeyClass(Text.class);
// 设置reduce任务输出值类型
job.setOutputValueClass(IntWritable.class);
// 设置分区数量(reduce任务的数量,结果文件的数量)
job.setNumReduceTasks(3);
// 定义uri字符串
String uri = "hdfs://master:9000";
// 创建输入目录
Path inputPath = new Path(uri + "/wordcount2/input");
// 创建输出目录
Path outputPath = new Path(uri + "/wordcount2/output");
// 获取文件系统
FileSystem fs = FileSystem.get(new URI(uri), conf);
// 删除输出目录(第二个参数设置是否递归)
fs.delete(outputPath, true);
// 给作业添加输入目录(允许多个)
FileInputFormat.addInputPath(job, inputPath);
// 给作业设置输出目录(只能一个)
FileOutputFormat.setOutputPath(job, outputPath);
// 等待作业完成
boolean res = job.waitForCompletion(true);
// 输出统计结果
System.out.println("======统计结果======");
FileStatus[] fileStatuses = fs.listStatus(outputPath);
for (int i = 1; i < fileStatuses.length; i++) {
// 输出结果文件路径
System.out.println(fileStatuses[i].getPath());
// 获取文件系统数据字节输入流
FSDataInputStream in = fs.open(fileStatuses[i].getPath());
// 将结果文件显示在控制台
IOUtils.copyBytes(in, System.out, 4096, false);
}
if (res) {
return 0;
} else {
return -1;
}
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new WordCount(), args);
System.exit(res);
}
}
hdfs dfs -getmerge /wordcount/result part-r-final
利用MR对多个文件进行词频统计,得到的一个或多个结果文件,多个结果文件可以合并成一个最终结果文件,比如part-r-final,然后利用Linux命令统计行数即可。